1. Academic Validation
  2. Lysophosphatidic acids. Influence on platelet aggregation and intracellular calcium flux

Lysophosphatidic acids. Influence on platelet aggregation and intracellular calcium flux

  • Am J Pathol. 1979 Aug;96(2):423-38.
J M Gerrard S E Kindom D A Peterson J Peller K E Krantz J G White
PMID: 112871
Abstract

Decanoyl-, palmitoyl-, and oleoyl-lysophosphatidic acid (LPA) were studied for their effects on platelet aggregation and intracellular calcium flux. Palmitoyl-LPA and oleoyl-LPA both caused a concentration-dependent aggregation of human blood platelets at concentrations of 12--300 microM. Aggregation by adenosine diphosphate (ADP) was enhanced at slightly lower concentrations. First-wave aggregation induced by these LPAs was not blocked by aspirin, indomethacin, or heparin, suggesting similarities to ADP aggregation. However, in washed platelets with a high calcium concentration, no serotonin secretion was observed, even though full aggregation occurred, suggesting that aggregation was not due to released ADP. This concept was supported by studies of platelets deficient in the storage pool of ADP and serotonin, which had a normal first-wave aggregation response to palmitoyl-LPA. Aggregation induced by palmitoyl LPA was inhibited by prostaglandin E1 (PGE1), theophylline, and ethylenediaminotetraacetate (EDTA), though in the presence of EDTA shape change occurred. Aggregation stimulated by palmitoyl-LPA or oleoyl-LPA was characterized by changes in the shape of the platelets with development of pseudopods and centralization of granules closely surrounded by contractile microfilaments and supporting microtubules. The addition of palmitoyl-LPA and oleoyl-LPA, but not decanoyl-LPA, caused the release of calcium from a platelet membrane fraction that contains elements of the intracellular calcium storage system and actively concentrates this cation in the presence of adenosine triphosphate (ATP) and magnesium. It is suggested that LPAs cause aggregation by stimulating the release of calcium intracellularly.

Figures
Products