1. Academic Validation
  2. Mechanism of biochemical action of substituted benzopyran-2-ones. Part 8: Acetoxycoumarin: protein transacetylase specificity for aromatic nuclear acetoxy groups in proximity to the oxygen heteroatom

Mechanism of biochemical action of substituted benzopyran-2-ones. Part 8: Acetoxycoumarin: protein transacetylase specificity for aromatic nuclear acetoxy groups in proximity to the oxygen heteroatom

  • Bioorg Med Chem. 2001 May;9(5):1085-9. doi: 10.1016/s0968-0896(00)00328-x.
H G Raj 1 E Kohli R Goswami S Goel R C Rastogi S C Jain J Wengel C E Olsen V S Parmar
Affiliations

Affiliation

  • 1 Department of Biochemistry, V. P. Chest Institute, University of Delhi, Delhi 110 007, India.
Abstract

Our earlier work established a convenient assay procedure for acetoxycoumarin (AC): protein transacetylase (TA) by indirectly quantifying the activity of glutathione (GSH)-S-transferase (GST), the extent of inhibition of GST under the conditions of the assay represented TA activity. In this communication, we have probed the specificity for TA with respect to the number and position of acetoxy groups on the benzenoid as well as the pyranone rings of the coumarin system governing the efficient transfer of acetyl groups to the protein(s). For this purpose, Coumarins bearing one acetoxy group, separately at C-3 or C-4 position and 4-methylcoumarins bearing single acetoxy group, separately at C-5, C-6 or C-7 position were synthesized and specificities to rat liver microsomal TA were examined. Negligible TA activity was discernible with 3-AC as the substrate, while the substrate efficiency of other AC were in the order 7-acetoxy-4-methylcoumarin (7 AMC)>6 AMC>5 AMC=5 ADMC=4 AC. To achieve a comparable level of GST inhibition which was proportional to the enzymatic transfer of acetyl groups to the protein (GST), the concentrations of 7-AMC, 6-AMC, 5-AMC and 4-AC were in the order 1:2:4:4, respectively. One diacetoxycoumarin, i.e., 7,8-diacetoxy-4-methylcoumarin (DAMC) was also examined and it was found to elicit maximum level of GST inhibition, nearly twice that observed with 7-AMC. These observations lead to the logical conclusion that a high degree of acetyl group transfer capability is conferred when the acetoxy group on the benzenoid ring of the coumarin system is in closer proximity to the oxygen heteroatom, i.e., when the acetoxy groups are at the C-7 and C-8 positions.

Figures
Products