1. Academic Validation
  2. The rabbit motilin receptor: molecular characterisation and pharmacology

The rabbit motilin receptor: molecular characterisation and pharmacology

  • Br J Pharmacol. 2003 Nov;140(5):948-54. doi: 10.1038/sj.bjp.0705505.
N B Dass 1 J Hill A Muir T Testa A Wise G J Sanger
Affiliations

Affiliation

  • 1 Department of Gastrointestinal Research, Neurology and Gastroenterology Centre of Excellence for Drug Discovery, GlaxoSmithKline, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW, UK. [email protected]
Abstract

Following identification of the human Motilin Receptor, we isolated the rabbit orthologue by PCR amplification and found this to be 85% identical to the open reading frame of the human receptor. The protein encoded was 84% identical to the human polypeptide. In HEK293T cells transfected with the rabbit receptor, motilin concentration-dependently increased intracellular calcium mobilisation (pEC50=9.25). After transfection with Go1alpha, motilin similarly stimulated [35S]GTPgammaS binding (pEC50=8.87). Using both systems, similar values were obtained with the human receptor, with rank-order potencies of motilin=[Nle13]-motilin>erythromycin; ghrelin was ineffective. In circular muscle preparations of rabbit gastric antrum, [Nle13]-motilin 0.1-30 nM concentration-dependently increased the amplitude of electrically-evoked, neuronally-mediated contractions (pEC50=8.3); higher concentrations increased the muscle tension (30-3000 nM). Both responses to [Nle13]-motilin faded rapidly during its continual presence. Rat or human ghrelin 0.01-10 microM were without activity. Erythromycin 30-3000 nM and 10 microM, respectively, increased neuronal activity and muscle tension in rabbit stomach. Unlike [Nle13]-motilin, the increase in neuronal activity did not fade during continual presence of submaximally-effective concentrations of erythromycin; some fade was observed at higher concentrations. We conclude that the pharmacology of the rabbit Motilin Receptor is similar to the human orthologue and, when expressed as a recombinant, comparable to the native receptor. However, in terms of their ability to increase neuronal activity in rabbit stomach, [Nle13]-motilin and erythromycin are distinguished by different response kinetics, reflecting different rates of ligand degradation and/or interaction with the receptor.

Figures
Products