1. Academic Validation
  2. Novel agonists and antagonists for human protease activated receptor 2

Novel agonists and antagonists for human protease activated receptor 2

  • J Med Chem. 2010 Oct 28;53(20):7428-40. doi: 10.1021/jm100984y.
Grant D Barry 1 Jacky Y Suen Giang T Le Adam Cotterell Robert C Reid David P Fairlie
Affiliations

Affiliation

  • 1 Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld 4072, Australia.
Abstract

Human protease activated receptor 2 (PAR2) is a G protein-coupled receptor that is associated with inflammatory diseases and cancers. PAR2 is activated by serine proteases that cleave its N-terminus and by synthetic Peptides corresponding to the new N-terminus. Peptide agonists are widely used to characterize physiological roles for PAR2 but typically have low potency (e.g., SLIGKV-NH(2), SLIGRL-NH(2)), uncertain target selectivity, and poor bioavailability, limiting their usefulness for specifically interrogating PAR2 in vivo. Structure-activity relationships were used to derive new PAR2 agonists and antagonists containing nonpeptidic moieties. Agonist GB110 (19, EC(50) 0.28 μM) selectively induced PAR2-, but not PAR1-, mediated intracellular Ca(2+) release in HT29 human colorectal carcinoma cells. Antagonist GB83 (36, IC(50) 2 μM) is the first compound at micromolar concentrations to reversibly inhibit PAR2 activation by both proteases and other PAR2 agonists (e.g., trypsin, 2f-furoyl-LIGRLO-NH(2), 19). The new compounds are selective for PAR2 over PAR1, serum stable, and suitable for modulating PAR2 in disease models.

Figures
Products