1. Academic Validation
  2. Biochemical characterization of Warsaw breakage syndrome helicase

Biochemical characterization of Warsaw breakage syndrome helicase

  • J Biol Chem. 2012 Jan 6;287(2):1007-21. doi: 10.1074/jbc.M111.276022.
Yuliang Wu 1 Joshua A Sommers Irfan Khan Johan P de Winter Robert M Brosh Jr
Affiliations

Affiliation

  • 1 Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA.
Abstract

Mutations in the human ChlR1 gene are associated with a unique genetic disorder known as Warsaw breakage syndrome characterized by cellular defects in sister chromatid cohesion and hypersensitivity to agents that induce replication stress. A role of ChlR1 helicase in sister chromatid cohesion was first evidenced by studies of the yeast homolog Chl1p; however, its cellular functions in DNA metabolism are not well understood. We carefully examined the DNA substrate specificity of purified recombinant human ChlR1 protein and the biochemical effect of a patient-derived mutation, a deletion of a single lysine (K897del) in the extreme C terminus of ChlR1. The K897del clinical mutation abrogated ChlR1 helicase activity on forked duplex or D-loop DNA substrates by perturbing its DNA binding and DNA-dependent ATPase activity. Wild-type ChlR1 required a minimal 5' single-stranded DNA tail of 15 nucleotides to efficiently unwind a simple duplex DNA substrate. The additional presence of a 3' single-stranded DNA tail as short as five nucleotides dramatically increased ChlR1 helicase activity, demonstrating the preference of the Enzyme for forked duplex structures. ChlR1 unwound G-quadruplex (G4) DNA with a strong preference for a two-stranded antiparallel G4 (G2') substrate and was only marginally active on a four-stranded parallel G4 structure. The marked difference in ChlR1 helicase activity on the G4 substrates, reflected by increased binding to the G2' substrate, distinguishes ChlR1 from the sequence-related FANCJ helicase mutated in Fanconi anemia. The biochemical results are discussed in LIGHT of the known cellular defects associated with ChlR1 deficiency.

Figures