1. Academic Validation
  2. Open-channel structures of the human glycine receptor α1 full-length transmembrane domain

Open-channel structures of the human glycine receptor α1 full-length transmembrane domain

  • Structure. 2013 Oct 8;21(10):1897-904. doi: 10.1016/j.str.2013.07.014.
David D Mowrey 1 Tanxing Cui Yuanyuan Jia Dejian Ma Alexander M Makhov Peijun Zhang Pei Tang Yan Xu
Affiliations

Affiliation

  • 1 Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA.
Abstract

Glycine receptors play a major role in mediating fast inhibitory neurotransmission in the spinal cord and brain stem, yet their high-resolution structures remain unsolved. We determined open-channel structures of the full-length transmembrane domain (TMD) of the human glycine receptor α1-subunit (hGlyR-α1) using nuclear magnetic resonance (NMR) spectroscopy and electron micrographs. hGlyR-α1 TMD spontaneously forms pentameric Cl(-)-conducting channels, with structures sharing overall topology observed in crystal structures of homologous Bacterial and nematode pentameric ligand-gated ion channels (pLGICs). However, the mammalian hGlyR-α1 structures present several distinctive features, including a shorter, pore-lining TM2 helix with helical unwinding near the C-terminal end, a TM3 helical kink at A288 that partially overlaps with the homologous ivermectin-binding site in GluCl, and a highly dynamic segment between S267(15') of TM2 and A288 that likely affects allosteric modulations of channel function. Our structures provide additional templates for identifying potential drug targets in GlyRs and other mammalian pLGICs.

Figures