1. Academic Validation
  2. The Synthesis and Evaluations of the (6 8) Ga-Lissamine Rhodamine B (LRB) as a New Radiotracer for Imaging Tumors by Positron Emission Tomography

The Synthesis and Evaluations of the (6 8) Ga-Lissamine Rhodamine B (LRB) as a New Radiotracer for Imaging Tumors by Positron Emission Tomography

  • Biomed Res Int. 2016;2016:8549635. doi: 10.1155/2016/8549635.
Xuena Li 1 Yafu Yin 1 Bulin Du 1 Na Li 1 Yaming Li 1
Affiliations

Affiliation

  • 1 Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang 110001, China.
Abstract

Purpose: The aim of this study is to synthesize and evaluate (68)Ga-labeled Lissamine Rhodamine B (LRB) as a new radiotracer for imaging MDA-MB-231 and MCF-7 cells induced tumor mice by positron emission tomography (PET).

Methods: Firstly, we performed the radio synthesis and microPET imaging of (68)Ga(DOTA-LRB) in athymic nude mice bearing MDA-MB-231 and MCF-7 human breast Cancer xenografts. Additionally, the evaluations of (18)F-fluorodeoxyglucose (FDG), as a glucose metabolism radiotracer for imaging tumors in the same xenografts, have been conducted as a comparison.

Results: The radiochemical purity of (68)Ga(DOTA-LRB) was >95%. MicroPET dynamic imaging revealed that the uptake of (68)Ga(DOTA-LRB) was mainly in normal organs, such as kidney, heart, liver, and brain and mainly excreted from kidney. The MDA-MB-231 and MCF-7 tumors were not clearly visible in PET images at 5, 15, 30, 40, 50, and 60 min after injection of (68)Ga(DOTA-LRB). The tumor uptake values of (18)F-FDG were 3.79 ± 0.57 and 1.93 ± 0.48%ID/g in MDA-MB-231 and MCF-7 tumor xenografts, respectively.

Conclusions: (68)Ga(DOTA-LRB) can be easily synthesized with high radiochemical purity and stability; however, it may be not an ideal PET radiotracer for imaging of MDR-positive tumors.

Figures
Products