1. Academic Validation
  2. UFM1 founder mutation in the Roma population causes recessive variant of H-ABC

UFM1 founder mutation in the Roma population causes recessive variant of H-ABC

  • Neurology. 2017 Oct 24;89(17):1821-1828. doi: 10.1212/WNL.0000000000004578.
Eline M C Hamilton 1 Enrico Bertini 1 Luba Kalaydjieva 1 Bharti Morar 1 Dana Dojčáková 1 Judy Liu 1 Adeline Vanderver 1 Julian Curiel 1 Claudia M Persoon 1 Daria Diodato 1 Lorenzo Pinelli 1 Nathalie L van der Meij 1 Barbara Plecko 1 Susan Blaser 1 Nicole I Wolf 1 Quinten Waisfisz 1 Truus E M Abbink 1 Marjo S van der Knaap 2 Recessive H-ABC Research Group
Affiliations

Affiliations

  • 1 From the Department of Child Neurology (E.M.C.H., N.I.W., T.E.M.A., M.S.v.d.K.), Amsterdam Neuroscience (E.M.C.H., N.I.W., T.E.M.A., M.S.v.d.K.), Department of Clinical Genetics (C.M.P., Q.W.), Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (M.S.v.d.K.), VU University and VU University Medical Center, Amsterdam, the Netherlands; Unit of Neuromuscular and Neurodegenerative Disorders (E.B., D. Diodato), Laboratory of Molecular Medicine, "Bambino Gesù" Children's Hospital, IRCCS, Rome, Italy; Harry Perkins Institute of Medical Research and Centre for Medical Research (L.K., B.M.), University of Western Australia, Perth; Department of Biology (D. Dojčáková), Faculty of Humanities and Natural Sciences, University of Presov, Slovakia; Center for Neuroscience Research (J.L., J.C.), Children's Research Institute; Department of Neurology, Center for Genetic Medicine Research (A.V.), Children's National Medical Center, Washington, DC; Department of Neuroradiology (L.P.), Section of Pediatric Neuroradiology, Spedali Civili, Brescia, Italy; MRC Holland (N.L.v.d.M.), Amsterdam, the Netherlands; Division of Neurology (B.P.), Children's Hospital, University of Zurich, Switzerland; and Division of Pediatric Neuroradiology (S.B.), Hospital for Sick Children, Toronto, Canada.
  • 2 From the Department of Child Neurology (E.M.C.H., N.I.W., T.E.M.A., M.S.v.d.K.), Amsterdam Neuroscience (E.M.C.H., N.I.W., T.E.M.A., M.S.v.d.K.), Department of Clinical Genetics (C.M.P., Q.W.), Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (M.S.v.d.K.), VU University and VU University Medical Center, Amsterdam, the Netherlands; Unit of Neuromuscular and Neurodegenerative Disorders (E.B., D. Diodato), Laboratory of Molecular Medicine, "Bambino Gesù" Children's Hospital, IRCCS, Rome, Italy; Harry Perkins Institute of Medical Research and Centre for Medical Research (L.K., B.M.), University of Western Australia, Perth; Department of Biology (D. Dojčáková), Faculty of Humanities and Natural Sciences, University of Presov, Slovakia; Center for Neuroscience Research (J.L., J.C.), Children's Research Institute; Department of Neurology, Center for Genetic Medicine Research (A.V.), Children's National Medical Center, Washington, DC; Department of Neuroradiology (L.P.), Section of Pediatric Neuroradiology, Spedali Civili, Brescia, Italy; MRC Holland (N.L.v.d.M.), Amsterdam, the Netherlands; Division of Neurology (B.P.), Children's Hospital, University of Zurich, Switzerland; and Division of Pediatric Neuroradiology (S.B.), Hospital for Sick Children, Toronto, Canada. [email protected].
Abstract

Objective: To identify the gene defect in patients with hypomyelination with atrophy of the basal ganglia and cerebellum (H-ABC) who are negative for TUBB4A mutations.

Methods: We performed homozygosity mapping and whole exome sequencing (WES) to detect the disease-causing variant. We used a Taqman assay for population screening. We developed a luciferase reporter construct to investigate the effect of the promoter mutation on expression.

Results: Sixteen patients from 14 families from different countries fulfilling the MRI criteria for H-ABC exhibited a similar, severe clinical phenotype, including lack of development and a severe epileptic encephalopathy. The majority of patients had a known Roma ethnic background. Single nucleotide polymorphism array analysis in 5 patients identified one large overlapping homozygous region on chromosome 13. WES in 2 patients revealed a homozygous deletion in the promoter region of UFM1. Sanger sequencing confirmed homozygosity for this variant in all 16 patients. All patients shared a common haplotype, indicative of a founder effect. Screening of 1,000 controls from different European Roma panels demonstrated an overall carrier rate of the mutation of 3%-25%. Transfection assays showed that the deletion significantly reduced expression in specific CNS cell lines.

Conclusions: UFM1 encodes ubiquitin-fold modifier 1 (UFM1), a member of the ubiquitin-like family involved in posttranslational modification of proteins. Its exact biological role is unclear. This study associates a UFM1 gene defect with a disease and sheds new LIGHT on possible UFM1 functional networks.

Figures