1. Academic Validation
  2. Targeting RECQL5 Functions, by a Small Molecule, Selectively Kills Breast Cancer in Vitr o and in Vivo

Targeting RECQL5 Functions, by a Small Molecule, Selectively Kills Breast Cancer in Vitr o and in Vivo

  • J Med Chem. 2021 Feb 11;64(3):1524-1544. doi: 10.1021/acs.jmedchem.0c01692.
Saikat Chakraborty 1 2 Kartik Dutta 1 2 Pooja Gupta 1 2 Anubrata Das 1 2 Amit Das 2 3 Sunil Kumar Ghosh 1 2 Birija Sankar Patro 1 2
Affiliations

Affiliations

  • 1 Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.
  • 2 Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
  • 3 Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.
Abstract

Clinical and preclinical data reveal that RECQL5 protein overexpression in breast Cancer was strongly correlated with poor prognosis, survival, and therapeutic resistance. In the current investigation, we report design, synthesis, and specificity of a small molecule, 4a, which can preferentially kill RECQL5-expressing breast cancers but not RECQL5 knockout. Our stringent analysis showed that compound 4a specifically sensitizes RECQL5-expressing cancers, while it did not have any effect on other members of DNA RECQL-helicases. Integrated approaches of organic synthesis, biochemical, in silico molecular simulation, knockouts, functional mutation, and rescue experiments showed that 4a potently inhibits RECQL5-helicase activity and stabilizes RECQL5-RAD51 physical interaction, leading to impaired HRR and preferential killing of RECQL5-expressing breast Cancer. Moreover, 4a treatment led to the efficient sensitization of cisplatin-resistant breast cancers but not normal mammary epithelial cells. Pharmacologically, compound 4a was orally effective in reducing the growth of RECQL5-expressing breast tumors (human xenograft) in NUDE-mice with no appreciable toxicity to the vital organs.

Figures
Products
  • Cat. No.
    Product Name
    Description
    Target
    Research Area
  • HY-145685
    98.19%, RECQL5 Inhibitor