1. Academic Validation
  2. miR-29c-3p represses the angiogenesis of esophageal squamous cell carcinoma by targeting SERPINH1 to regulate the Wnt signaling pathway

miR-29c-3p represses the angiogenesis of esophageal squamous cell carcinoma by targeting SERPINH1 to regulate the Wnt signaling pathway

  • Acta Cir Bras. 2023 Dec 4:38:e385223. doi: 10.1590/acb385223.
Desheng Wei 1 2 Zhifeng Ma 1 2 Ting Zhu 1 2 Haiyong Wang 1 2 Bin Wang 1 2 Linhai Fu 1 2 Guangmao Yu 1 2
Affiliations

Affiliations

  • 1 Shaoxing People's Hospital - Department of Thoracic Surgery - Shaoxing - Zhejiang Province, China.
  • 2 Zhejiang University - School of Medicine - Shaoxing - Zhejiang Province, China.
Abstract

Purpose: Esophageal squamous cell carcinoma (ESCC) is characterized by early metastasis and late diagnosis. miR-29c-3p is confirmed to repress angiogenesis in multiple tumor types. Yet, the functions of miR-29c-3p in the mechanism of ESCC angiogenesis, which were not sufficiently explored previously, were exactly what we investigated here at the molecular level.

Methods: The mRNA level of miR-29c-3p and Serpin peptidase inhibitor clade H member 1 (SERPINH1) in ESCC tissues were assessed via bioinformatics analysis. Thereafter, miR-29c-3p and SERPINH1 (HSP47) mRNA level in ESCC cell lines was evaluated via quantitative real-time polymerase chain reaction. The effects of abnormal miR-29c-3p and SERPINH1 expression on ESCC cell viability, proliferation, migration, invasion, and HUVEC angiogenesis were examined via CCK8, colony formation, transwell, and angiogenesis assays, respectively. The protein levels of SERPINH1, vascular endothelial growth factor-A (VEGFA), Wnt-1, ?-catenin, and p-?-catenin were evaluated via Western blot. Expression of VEGFA secreted by ESCC cells was measured via enzyme-linked immunosorbent assay. Treatment with the Wnt activator BML-284 further revealed the way miR-29c-3p mediated the Wnt signaling pathway and its effects on angiogenesis.

Results: Herein, we revealed a decrease of miR-29c-3p expression in ESCC tissues and cells, while the overexpressed miR-29c-3p could remarkably suppress ESCC cell progression, as well as HUVEC angiogenesis. Meanwhile, overexpressed miR-29c-3p notably downregulated VEGFA and repressed the Wnt signaling pathway. Treatment with the Wnt activator BML-284 could reverse the inhibition of HUVEC angiogenesis caused by miR-29c-3p. SERPINH1 was a downstream target of miR-29c-3p. SERPINH1 knockdown suppressed the malignant phenotypes of ESCC cells and impeded the Wnt signaling activation, while such suppression was reversed through miR-29c-3p inhibitor.

Conclusions: We confirmed the mechanism that miR-29c-3p targeted SERPINH1, thus regulating angiogenesis in ESCC through the Wnt signaling pathway. It improves the understanding of angiogenesis in ESCC and offers new ideas for the research of ESCC treatment strategies in the future.

Figures
Products
  • Cat. No.
    Product Name
    Description
    Target
    Research Area
  • HY-19987
    99.95%, Wnt Signaling Activator
    Wnt