1. Academic Validation
  2. Shexiang Tongxin dropping pills protect against ischemic stroke-induced cerebral microvascular dysfunction via suppressing TXNIP/NLRP3 signaling pathway

Shexiang Tongxin dropping pills protect against ischemic stroke-induced cerebral microvascular dysfunction via suppressing TXNIP/NLRP3 signaling pathway

  • J Ethnopharmacol. 2023 Dec 18:117567. doi: 10.1016/j.jep.2023.117567.
Li Zhu 1 Yi-Ming Yang 2 Yi Huang 3 Hong-Kai Xie 2 Yong Luo 2 Chun Li 4 Wei Wang 5 Yang Chen 6
Affiliations

Affiliations

  • 1 NMPA Key Laboratory for Research of Traditional Chinese Medicine Syndrome, School of Pharmaceutics, Guangzhou University of Chinese Medicine, Guangzhou, 51006, Guangdong, China; Institute of Formula and Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 51006, Guangdong, China.
  • 2 NMPA Key Laboratory for Research of Traditional Chinese Medicine Syndrome, School of Pharmaceutics, Guangzhou University of Chinese Medicine, Guangzhou, 51006, Guangdong, China.
  • 3 Department of Stomatology, The First Affiliated Hospital, The School of Dental Medicine, Jinan University, Guangzhou, 510632, China.
  • 4 Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
  • 5 NMPA Key Laboratory for Research of Traditional Chinese Medicine Syndrome, School of Pharmaceutics, Guangzhou University of Chinese Medicine, Guangzhou, 51006, Guangdong, China. Electronic address: [email protected].
  • 6 NMPA Key Laboratory for Research of Traditional Chinese Medicine Syndrome, School of Pharmaceutics, Guangzhou University of Chinese Medicine, Guangzhou, 51006, Guangdong, China. Electronic address: [email protected].
Abstract

Ethnopharmacological relevance: Patients with ischemic stroke (IS) often continue to exhibit cerebral microcirculatory dysfunction even after receiving thrombolytic therapy. Enhancing the function of cerebral microvascular endothelia represents a pivotal advancement in the therapeutic strategy for ischemic microcirculatory disturbances. A traditional Chinese medicinal formulation named Shexiang Tongxin Dropping Pills (STDP), has been clinically employed to ameliorate microcirculatory abnormalities. Existing literature attests to the beneficial role of STDP on endothelial cells (ECs). Nevertheless, specific impacts and underlying mechanisms of STDP in rectifying IS-induced cerebral microvascular dysfunction warrant further exploration.

Aim of the study: This investigation seeks to delineate the effects of STDP on cerebral microvascular endothelial damage induced by ischemic stroke and to elucidate the underlying mechanism involved.

Materials and methods: Middle cerebral artery occlusion and reperfusion (MCAO/R) technique was employed to established ischemic stroke model in mice. The therapeutic efficacy of STDP on cerebral microvascular function was assessed through laser speckle contrast imaging, behavioral assays, and histological evaluations. Biochemical markers in the brain tissue, including GSH, SOD, MDA, and ROS, were quantified using specific assay kits. In vitro study, oxygen-glucose deprivation and reperfusion (OGD/R) was performed in bEnd.3 cells. The cytoprotective potential of STDP was then evaluated by measuring cell viability, LDH activity, endothelial permeability, and oxidative stress parameters. Important targets in critical pathway were verified by immunoblotting and immunofluorescence both in mice brain slices and bEnd.3 cells.

Results: STDP decrease brain infarct size, repaired microvascular cerebral blood flow and attenuated neurological deficiency in MCAO/R mice. Moreover, STDP abolished MCAO/R-induced oxidative stress which was reflected by rescuing GSH content, restoration of SOD activity and T-AOC, reduction of MDA and ROS. Ex vivo, STDP increased cerebral microvascular endothelial cells viability, abolished oxidative stress and decreased their permeability after ODG/R. Mechanistically, STDP significantly suppressed endothelial ROS-TXNIP mediated the activation of NLRP3 inflammasome in vivo and in vitro.

Conclusion: STDP improves ischemic stroke-induced cerebral microcirculatory deficits by regulating cerebral microvascular endothelial ROS/TXNIP/NLRP3 signaling pathway.

Keywords

Cerebral microvascular dysfunction; Endothelium; Ischemic stroke; NLRP3; Oxidative stress; Shexiang Tongxin dropping pill; TXNIP.

Figures
Products