1. Academic Validation
  2. Neuronal free calcium measurement using BTC/AM, a low affinity calcium indicator

Neuronal free calcium measurement using BTC/AM, a low affinity calcium indicator

  • Cell Calcium. 1998 Sep;24(3):165-75. doi: 10.1016/s0143-4160(98)90126-9.
K L Hyrc 1 J M Bownik M P Goldberg
Affiliations

Affiliation

  • 1 Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA.
Abstract

BTC is a low affinity calcium indicator (Kd approximately 7-26 microM) featuring many desirable properties for cellular calcium imaging, including long excitation wavelengths (400/485 nm), low sensitivity to Mg2+, and accuracy of ratiometric measurement [Iatridou H., Foukaraki E., Kuhn M.A., Marcus E.M., Haugland R.P., Katerinopoulos H.E. The development of a new family of intracellular calcium probes. Cell Calcium 1994; 15: 190-198]. To assess the usefulness of this indicator in cultured neurons, we examined properties of BTC and its acetoxymethyl ester, BTC/AM. BTC/AM had substantial calcium-independent fluorescence at all excitation wavelengths. BTC/AM was readily loaded into neurons and was rapidly hydrolysed. There was little dye compartmentalization, as assessed by digitonin lysis, Co2+ quenching of BTC fluorescence and by confocal microscopy. Despite adequate loading, BTC gradually became unresponsive to [Ca2+]i when cultures were examined under routine imaging conditions. This effect was a function of the cumulative fluorescence illumination and could be minimized by attenuating LIGHT intensity or duration. Ratio imaging after exposure of neuronal cultures to 1-50 microM ionomycin revealed distinct sensitivity ranges for BTC and Fura-2. BTC reported graded neuronal [Ca2+]i responses to glutamate receptor stimulation with N-methyl-D-aspartate in the range 10-50 microM, whereas Fura-2 did not distinguish between these stimuli. Under appropriate loading and illumination conditions, bath-loaded BTC/AM may be well suited for measurement of moderate to high calcium concentrations in cultured neurons.

Figures
Products