1. Academic Validation
  2. Increased sensitivity to chromatid aberration induction by bleomycin and neocarzinostatin results from alterations in a DNA damage response pathway

Increased sensitivity to chromatid aberration induction by bleomycin and neocarzinostatin results from alterations in a DNA damage response pathway

  • Mutat Res. 2000 Sep 20;453(1):5-15. doi: 10.1016/s0027-5107(00)00030-0.
T Allio 1 R J Preston
Affiliations

Affiliation

  • 1 Chemical Industry Institute of Toxicology, Research Triangle Park, NC 27709, USA.
Abstract

DNA damage response pathways coordinate the cellular response to DNA damage. To investigate the roles of tumor suppressor genes in these pathways, human lymphoblastoid cells (wild-type, p53-/-, ATM-/-) were treated for 1 h with 0-3 microg/ml of the radiomimetic compound bleomycin (BLM), and cells treated in G(2) were analyzed for chromatid aberrations. BLM-induced aberration frequencies were significantly increased, to the greatest extent in the ATM-/- cells and, to a lesser extent, in the p53-/- cells compared to wild-type cells. These observations are consistent with p53 and ATM acting in a damage response pathway activated by DNA strand breaks. The consequences of disrupting this pathway were further investigated by studies using wortmannin, a PI-3 kinase and DNA repair inhibitor. Wortmannin significantly increased the BLM-induced aberration frequencies in all but the ATM-/- cells, elevating the sensitivity of p53-/- cells to ATM-/- levels and that of wild-type cells to intermediate levels. These differential sensitivities suggest that the ATM phenotype is the result of dual cellular defects, one involving p53 and the other a wortmannin-sensitive component. Similar studies in Brca1+/- and Brca2+/- human lymphoblasts showed no increased sensitization to BLM in the absence of inhibitor, and differential sensitization by wortmannin. To determine if there was any substrate specificity for p53- and ATM-mediated DNA damage responses, chromatid aberrations were assessed in wild-type, p53-/-, and ATM-/- cells exposed to 0-0.4 microg/ml neocarzinostatin (NCS) for 1 h. In contrast to results with BLM, the p53-/- cells exhibited a low sensitivity to NCS-induced aberrations, similar to wild-type, while ATM-/- cells remained highly sensitive. This suggests that the response to BLM- and NCS-induced lesions involves different mechanisms.

Figures
Products