1. Academic Validation
  2. Dual action of palmitoyl trifluoromethyl ketone (PACOCF3) on Ca2+ signaling: activation of extracellular Ca2+ influx and alteration of ATP- and bradykinin-induced Ca2+ responses in Madin Darby canine kidney cells

Dual action of palmitoyl trifluoromethyl ketone (PACOCF3) on Ca2+ signaling: activation of extracellular Ca2+ influx and alteration of ATP- and bradykinin-induced Ca2+ responses in Madin Darby canine kidney cells

  • Arch Toxicol. 2000 Oct;74(8):447-51. doi: 10.1007/s002040000130.
C R Jan 1 K J Chou K C Lee J L Wang L L Tseng J S Cheng W C Chen
Affiliations

Affiliation

  • 1 Department of Medical Education and Research, Veterans General Hospital-Kaohsiung, Taiwan. [email protected]
Abstract

The effect of the Phospholipase A2 inhibitor palmitoyl trifluoromethyl ketone (PACOCF3) on Ca2+ signaling in Madin Darby canine kidney (MDCK) cells was examined using fura-2 as the fluorescent Ca2+ indicator. At a concentration of 20 microM, PACOCF3 did not change basal cytosolic free calcium concentrations ([Ca2+]i), but at concentrations of 50-250 microM PACOCF3 induced an increase in [Ca2+]i by activating extracellular Ca2+ entry which was partly suppressed by 50 microM La3+. The effect of PACOCF3 was abolished by removal of extracellular Ca2+. PACOCF3 (10 microM) enhanced both the peak value and the area under the curve of the [Ca2+]i increase induced by 10 microM ATP and 1 microM bradykinin by potentiating extracellular Ca2+ influx without affecting internal Ca2+ release. Several other Phospholipase A2 inhibitors had no effect on basal [Ca2+]i or agonist-induced [Ca2+]i increases. Collectively, the results suggest that PACOCF3 alters Ca2+ signaling in renal tubular cells in a manner independent of Phospholipase A2 inhibition.

Figures
Products