1. Academic Validation
  2. The Na+/Ca2+ exchange inhibitor 2-(2-(4-(4-nitrobenzyloxy)phenyl)ethyl)isothiourea methanesulfonate (KB-R7943) also blocks ryanodine receptors type 1 (RyR1) and type 2 (RyR2) channels

The Na+/Ca2+ exchange inhibitor 2-(2-(4-(4-nitrobenzyloxy)phenyl)ethyl)isothiourea methanesulfonate (KB-R7943) also blocks ryanodine receptors type 1 (RyR1) and type 2 (RyR2) channels

  • Mol Pharmacol. 2009 Sep;76(3):560-8. doi: 10.1124/mol.109.057265.
Genaro Barrientos 1 Diptiman D Bose Wei Feng Isela Padilla Isaac N Pessah
Affiliations

Affiliation

  • 1 Department of Molecular Biosciences, School of Veterinary Medicine, One Shields Avenue, University of California, Davis, CA 95616, USA.
Abstract

Na(+)/Ca(2+) exchanger (NCX) is a plasma membrane transporter that moves Ca(2+) in or out of the cell, depending on membrane potential and transmembrane ion gradients. NCX is the main pathway for Ca(2+) extrusion from excitable cells. NCX inhibitors can ameliorate cardiac ischemia-reperfusion injury and promote high-frequency fatigue of skeletal muscle, purportedly by inhibiting the Ca(2+) inward mode of NCX. Here we tested two known NCX inhibitors, 2-(2-(4-(4-nitrobenzyloxy)phenyl)ethyl)-isothiourea methanesulfonate (KB-R7943) and the structurally related 2-[[4-[(4-Nitrophenyl)methoxy]phenyl]methyl]-4-thiazoli dinecarboxylic acid ethyl ester (SN-6), for their influence on electrically or caffeine-evoked Ca(2+) transients in adult dissociated flexor digitorum brevis (FDB) skeletal muscle fibers and human embryonic kidney (HEK) 293 cells that have stable expression of type 1 ryanodine receptor (RyR1). KB-R7943 (< or = 10 microM) reversibly attenuates electrically evoked Ca(2+) transients in FDB and caffeine-induced Ca(2+) release in HEK 293, whereas the structurally related NCX inhibitor SN-6 does not, suggesting that KB-R7943 directly inhibits RyR1. In support of this interpretation, KB-R7943 inhibits high-affinity binding of [(3)H]ryanodine to RyR1 (IC(50) = 5.1 +/- 0.9 microM) and the cardiac isoform RyR2 (IC(50) = 13.4 +/- 1.8 microM). KB-R7943 interfered with the gating of reconstituted RyR1 and RyR2 channels, reducing open probability (P(o)), shortening mean open time, and prolonging mean closed time. KB-R7943 was more effective at blocking RyR1 with cytoplasmic conditions favoring high P(o) compared with those favoring low P(o). SN-6 has negligible activity toward altering [(3)H]ryanodine binding of RyR1 and RyR2. Our results identify that KB-R7943 is a reversible, activity-dependent blocker of the two most broadly expressed RyR channel isoforms and contributes to its pharmacological and therapeutic activities.

Figures
Products