1. Academic Validation
  2. 3-(R)-[3-(2-methoxyphenylthio-2-(S)-methylpropyl]amino-3,4-dihydro-2H-1,5-benzoxathiepine bromhydrate (F 15845) prevents ischemia-induced heart remodeling by reduction of the intracellular Na+ overload

3-(R)-[3-(2-methoxyphenylthio-2-(S)-methylpropyl]amino-3,4-dihydro-2H-1,5-benzoxathiepine bromhydrate (F 15845) prevents ischemia-induced heart remodeling by reduction of the intracellular Na+ overload

  • J Pharmacol Exp Ther. 2009 Sep;330(3):696-703. doi: 10.1124/jpet.109.153122.
Bruno Vié 1 Sylvie Sablayrolles Robert Létienne Bernard Vacher Amaria Darmellah Monique Bernard Danielle Feuvray Bruno Le Grand
Affiliations

Affiliation

  • 1 Centre de Recherche Pierre Fabre, 17 Avenue Jean Moulin, 81106 Castres Cedex, France.
Abstract

The present study investigates whether 3-(R)-[3-(2-methoxyphenylthio-2-(S)-methylpropyl]amino-3,4-dihydro-2H-1,5-benzoxathiepine bromhydrate (F 15845), a new, persistent sodium current blocker, can reduce the ischemic Na(+) accumulation and exert short- and long-term cardioprotection after myocardial infarction. First, F 15845 concentration-dependently reduced veratrine-induced diastolic contracture (IC(50) = 0.14 microM) in isolated atria. Second, F 15845 from 1 microM preserved viability in 54.2 +/- 12.5% of isolated cardiomyocytes exposed to lysophosphatidylcholine. Third, the effect of F 15845 on intracellular Na(+) of isolated hearts from control and diabetic db/db mice was monitored using (23)Na-nuclear magnetic resonance spectroscopy. F 15845 (0.3 microM) significantly counteracted [Na(+)](i) increase during no-flow ischemia in control mouse hearts. In diabetic db/db mouse hearts, the reduction in [Na(+)](i) was delayed relative to control. However, it was more marked and maintained upon reperfusion. The cardioprotective properties after myocardial infarction associated with short- (24-h) and long-term (14-day) reperfusion were measured in anesthetized rats. After 24-h reperfusion, F 15845 (5 mg/kg) significantly reduced infarct size (32.4 +/- 1.7% with vehicle and 24.2 +/- 3.4% with F 15845; P < 0.05) and decrease of troponin I levels (524 +/- 93 microg/l with vehicle versus 271 +/- 63 microg/l with F 15845; P < 0.05). It is important that F 15845 limits the long-term expansion of infarct size (35.2 +/- 2.6%, n = 19 versus 46.7 +/- 1.6%, n = 27 in the vehicle group; P < 0.001). Overall, F 15845 attenuates [Na(+)](i) and prevents (or reverses) contractile and biochemical dysfunction in ischemic and remodeling heart. F 15845 constitutes a new generation of cardioprotective agent.

Figures
Products