1. Academic Validation
  2. A novel pan-negative-gating modulator of KCa2/3 channels, fluoro-di-benzoate, RA-2, inhibits endothelium-derived hyperpolarization-type relaxation in coronary artery and produces bradycardia in vivo

A novel pan-negative-gating modulator of KCa2/3 channels, fluoro-di-benzoate, RA-2, inhibits endothelium-derived hyperpolarization-type relaxation in coronary artery and produces bradycardia in vivo

  • Mol Pharmacol. 2015 Feb;87(2):338-48. doi: 10.1124/mol.114.095745.
Aida Oliván-Viguera 1 Marta Sofía Valero 1 Nicole Coleman 1 Brandon M Brown 1 Celia Laría 1 María Divina Murillo 1 José A Gálvez 1 María D Díaz-de-Villegas 1 Heike Wulff 1 Ramón Badorrey 1 Ralf Köhler 2
Affiliations

Affiliations

  • 1 Aragon Institute of Health Sciences, Zaragoza, Spain (A.O.-V., R.K.); GIMACES, Facultad de Ciencias de la Salud, Universidad San Jorge, Villanueva de Gállego, Spain (M.S.V., C.L.); Department of Pharmacology, School of Medicine, University of California Davis, Davis, California (N.C., B.M.B, H.W.); Departamento de Farmacología y Fisiología, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain (M.D.M.); Departamento de Catálisis y Procesos Catalíticos, Instituto de Síntesis Química y Catálisis Homogénea, Consejo Superior de Investigaciones Científicas-Universidad de Zaragoza, Zaragoza, Spain (M.D.D.-V., J.A.G., R.B.); and Fundación Agencia Aragonesa para la Investigación y Desarrollo (R.K.).
  • 2 Aragon Institute of Health Sciences, Zaragoza, Spain (A.O.-V., R.K.); GIMACES, Facultad de Ciencias de la Salud, Universidad San Jorge, Villanueva de Gállego, Spain (M.S.V., C.L.); Department of Pharmacology, School of Medicine, University of California Davis, Davis, California (N.C., B.M.B, H.W.); Departamento de Farmacología y Fisiología, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain (M.D.M.); Departamento de Catálisis y Procesos Catalíticos, Instituto de Síntesis Química y Catálisis Homogénea, Consejo Superior de Investigaciones Científicas-Universidad de Zaragoza, Zaragoza, Spain (M.D.D.-V., J.A.G., R.B.); and Fundación Agencia Aragonesa para la Investigación y Desarrollo (R.K.). [email protected].
Abstract

Small/intermediate conductance KCa channels (KCa2/3) are Ca(2+)/Calmodulin regulated K(+) channels that produce membrane hyperpolarization and shape neurologic, epithelial, cardiovascular, and immunologic functions. Moreover, they emerged as therapeutic targets to treat Cardiovascular Disease, chronic inflammation, and some cancers. Here, we aimed to generate a new pharmacophore for negative-gating modulation of KCa2/3 channels. We synthesized a series of mono- and dibenzoates and identified three dibenzoates [1,3-phenylenebis(methylene) bis(3-fluoro-4-hydroxybenzoate) (RA-2), 1,2-phenylenebis(methylene) bis(3-fluoro-4-hydroxybenzoate), and 1,4-phenylenebis(methylene) bis(3-fluoro-4-hydroxybenzoate)] with inhibitory efficacy as determined by patch clamp. Among them, RA-2 was the most drug-like and inhibited human KCa3.1 with an IC50 of 17 nM and all three human KCa2 subtypes with similar potencies. RA-2 at 100 nM right-shifted the KCa3.1 concentration-response curve for Ca(2+) activation. The positive-gating modulator naphtho[1,2-d]thiazol-2-ylamine (SKA-31) reversed channel inhibition at nanomolar RA-2 concentrations. RA-2 had no considerable blocking effects on distantly related large-conductance KCa1.1, Kv1.2/1.3, Kv7.4, hERG, or inwardly rectifying K(+) channels. In isometric myography on porcine coronary arteries, RA-2 inhibited bradykinin-induced endothelium-derived hyperpolarization (EDH)-type relaxation in U46619-precontracted rings. Blood pressure telemetry in mice showed that intraperitoneal application of RA-2 (≤100 mg/kg) did not increase blood pressure or cause gross behavioral deficits. However, RA-2 decreased heart rate by ≈145 beats per minute, which was not seen in KCa3.1(-/-) mice. In conclusion, we identified the KCa2/3-negative-gating modulator, RA-2, as a new pharmacophore with nanomolar potency. RA-2 may be of use to generate structurally new types of negative-gating modulators that could help to define the physiologic and pathomechanistic roles of KCa2/3 in the vasculature, central nervous system, and during inflammation in vivo.

Figures
Products