1. Academic Validation
  2. Efficient, large-scale synthesis and preclinical studies of MRS5698, a highly selective A3 adenosine receptor agonist that protects against chronic neuropathic pain

Efficient, large-scale synthesis and preclinical studies of MRS5698, a highly selective A3 adenosine receptor agonist that protects against chronic neuropathic pain

  • Purinergic Signal. 2015 Sep;11(3):371-87. doi: 10.1007/s11302-015-9459-2.
Dilip K Tosh 1 Janak Padia Daniela Salvemini Kenneth A Jacobson
Affiliations

Affiliation

  • 1 Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
Abstract

We reported that 2-(3,4-difluorophenylethynyl)-N (6)-3-chlorobenzyl (N)-methanocarba adenosine derivative 1 (MRS5698) binds selectively to human and mouse A3 adenosine receptors (A3ARs, K i 3 nM). It is becoming an important pharmacological tool for defining A3AR effects and is orally active in a chronic neuropathic pain model. Here, we introduce a new synthetic route for MRS5698 from D-ribose, suitable for a scale-up on a multi-gram scale, and we measure in vitro and in vivo ADME-Tox parameters. MRS5698 was very stable in vitro, failed to inhibit CYPs at <10 μM, and was largely bound to plasma proteins. It was well tolerated in the rat at doses of ≤200 mg/kg i.p. A 1 mg/kg i.p. dose in the mouse displayed t 1/2 of 1.09 h and plasma Cmax of 204 nM at 1 h with an AUC of 213 ng × h/mL. CACO-2 bidirectional transport studies suggested intestinal efflux of MRS5698 (efflux ratio 86). Although the oral %F is only 5 %, the beneficial effect to reverse pain lasted for at least 2 h in the CCI model in rats, using the same vehicle for oral administration of a high dose. The stability, low toxicity, lack of CYP interaction, pharmacokinetic half-life, and in vivo efficacy suggest that MRS5698 is a preferred compound for further consideration as a treatment for neuropathic pain.

Figures
Products