1. Academic Validation
  2. Acidosis and 5-(N-ethyl-N-isopropyl)amiloride (EIPA) Attenuate Zinc/Kainate Toxicity in Cultured Cerebellar Granule Neurons

Acidosis and 5-(N-ethyl-N-isopropyl)amiloride (EIPA) Attenuate Zinc/Kainate Toxicity in Cultured Cerebellar Granule Neurons

  • Biochemistry (Mosc). 2015 Aug;80(8):1065-72. doi: 10.1134/S000629791508012X.
E V Stelmashook 1 S V Novikova G A Amelkina E G Ivashkin E E Genrikhs L G Khaspekov N K Isaev
Affiliations

Affiliation

  • 1 Research Center of Neurology, Russian Academy of Medical Sciences, Moscow, 125367, Russia. [email protected].
Abstract

Cultured cerebellar granule neurons (CGNs) are resistant to the toxic effect of ZnCl2 (0.005 mM, 3 h) and slightly sensitive to the effect of kainate (0.1 mM, 3 h). Simultaneous treatment of CGNs with kainate and ZnCl2 caused intensive neuronal death, which was attenuated by external acidosis (pH 6.5) or 5-(N-ethyl-N-isopropyl)amiloride (EIPA, Na+/H+ exchange blocker, 0.03 mM). Intracellular zinc and calcium ion concentrations ([Zn2+]i and [Ca2+]i) were increased under the toxic action of kainate + ZnCl2, this effect being significantly decreased on external acidosis and increased in case of EIPA addition. Neuronal Zn2+ imaging demonstrated that EIPA increases the cytosolic concentration of free Zn2+ on incubation in Zn2+-containing solution. These data imply that acidosis reduces ZnCl2/kainate toxic effects by decreasing Zn2+ entry into neurons, and EIPA prevents zinc stores from being overloaded with zinc.

Figures
Products