1. Academic Validation
  2. Substrate binding mode and catalytic mechanism of human heparan sulfate d-glucuronyl C5 epimerase

Substrate binding mode and catalytic mechanism of human heparan sulfate d-glucuronyl C5 epimerase

  • Proc Natl Acad Sci U S A. 2019 Apr 2;116(14):6760-6765. doi: 10.1073/pnas.1818333116.
Claire Debarnot 1 Yoan R Monneau 2 Véronique Roig-Zamboni 1 Vincent Delauzun 1 Christine Le Narvor 3 Emeline Richard 4 Jérôme Hénault 3 Adeline Goulet 1 Firas Fadel 1 Romain R Vivès 2 Bernard Priem 4 David Bonnaffé 3 Hugues Lortat-Jacob 2 Yves Bourne 5
Affiliations

Affiliations

  • 1 Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille University, 13288 Marseille, France.
  • 2 Institut de Biologie Structurale, University Grenoble Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, CNRS, 38044 Grenoble, France.
  • 3 Institut de Chimie Moléculaire et des Matériaux d'Orsay, University Paris Sud, CNRS, Université Paris-Saclay, 91405 Orsay, France.
  • 4 Centre de Recherches sur les Macromolécules Végétales, CNRS, University Grenoble Alpes, 38041 Grenoble, France.
  • 5 Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille University, 13288 Marseille, France; [email protected].
Abstract

Heparan sulfate (HS) is a linear, complex polysaccharide that modulates the biological activities of proteins through binding sites made by a series of Golgi-localized enzymes. Of these, glucuronyl C5-epimerase (Glce) catalyzes C5-epimerization of the HS component, d-glucuronic acid (GlcA), into l-iduronic acid (IdoA), which provides internal flexibility to the polymer and forges protein-binding sites to ensure polymer function. Here we report crystal structures of human Glce in the unbound state and of an inactive mutant, as assessed by real-time NMR spectroscopy, bound with a (GlcA-GlcNS)n substrate or a (IdoA-GlcNS)n product. Deep infiltration of the oligosaccharides into the active site cleft imposes a sharp kink within the central GlcNS-GlcA/IdoA-GlcNS trisaccharide motif. An extensive network of specific interactions illustrates the absolute requirement of N-sulfate groups vicinal to the epimerization site for substrate binding. At the epimerization site, the GlcA/IdoA rings are highly constrained in two closely related boat conformations, highlighting ring-puckering signatures during catalysis. The structure-based mechanism involves the two invariant acid/base residues, Glu499 and Tyr578, poised on each side of the target uronic acid residue, thus allowing reversible abstraction and readdition of a proton at the C5 position through a neutral enol intermediate, reminiscent of mandelate racemase. These structures also shed LIGHT on a convergent mechanism of action between HS epimerases and lyases and provide molecular frameworks for the chemoenzymatic synthesis of heparin or HS analogs.

Keywords

C5 epimerization; X-ray crystallography; catalytic mechanism; heparan sulfate; substrate distortion.

Figures