1. Academic Validation
  2. 3-Deoxyglucosone Induces Glucagon-Like Peptide-1 Secretion from STC-1 Cells via Upregulating Sweet Taste Receptor Expression under Basal Conditions

3-Deoxyglucosone Induces Glucagon-Like Peptide-1 Secretion from STC-1 Cells via Upregulating Sweet Taste Receptor Expression under Basal Conditions

  • Int J Endocrinol. 2019 Oct 23;2019:4959646. doi: 10.1155/2019/4959646.
Xiudao Song 1 2 Fei Wang 1 2 Heng Xu 1 2 Guoqiang Liang 1 2 Liang Zhou 1 2 Lurong Zhang 1 2 Fei Huang 3 Guorong Jiang 1 2
Affiliations

Affiliations

  • 1 Clinical Pharmaceutical Laboratory of Traditional Chinese Medicine, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215009, Jiangsu, China.
  • 2 Clinical Pharmaceutical Laboratory of Traditional Chinese Medicine, Suzhou Academy of Wumen Chinese Medicine, Suzhou 215009, Jiangsu, China.
  • 3 Department of Endocrinology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215009, Jiangsu, China.
Abstract

3-Deoxyglucosone (3DG) is derived from D-glucose during food processing and storage and under physiological conditions. We reported that glucagon-like peptide-1 (GLP-1) secretion in response to an oral glucose load in vivo and high-glucose stimulation in vitro was decreased by acute 3DG administration. In this study, we determined the acute effect of 3DG on GLP-1 secretion under basal conditions and investigated the possible mechanisms. Normal fasting rats were given a single acute intragastric administration of 50 mg/kg 3DG. Plasma basal GLP-1 levels and duodenum 3DG content and sweet taste receptor expression were measured. STC-1 cells were acutely exposed to 3DG (80, 300, and 1000 ng/ml) for 1 h under basal conditions (5.6 mM glucose), and GLP-1 secretion, intracellular concentrations of cyclic adenosine monophosphate (cAMP) and Ca2+, and molecular expression of STR signaling pathway were measured. Under the fasted state, plasma GLP-1 levels, duodenum 3DG content, and duodenum STR expression were elevated in 3DG-treated rats. GLP-1 secretion was increased in 3DG-treated cells under either 5.6 mM glucose or glucose-free conditions. 3DG-induced acute GLP-1 secretion from STC-1 cells under 5.6 mM glucose was inhibited in the presence of the STR inhibitor lactisole, which was consistent with the observation under glucose-free conditions. Moreover, acute exposure to 3DG increased the protein expression of TAS1R2 and TAS1R3 under either 5.6 mM glucose or glucose-free conditions, with affecting other components of STR signaling pathway, including the upregulation of transient receptor potential channel type M5 TRPM5 and the increment of intracellular Ca2+ concentration. In summary, the glucose-free condition was used to first demonstrate the involvement of STR in 3DG-induced acute GLP-1 secretion. These results first showed that acute 3DG administration induces basal GLP-1 secretion in part through upregulation of STR expression.

Figures
Products