1. Academic Validation
  2. Synthesis and degradation of poly(A) in permeable cells of Escherichia coli

Synthesis and degradation of poly(A) in permeable cells of Escherichia coli

  • J Biol Chem. 1978 Aug 25;253(16):5579-84.
M P Deutscher
PMID: 353056
Abstract

Poly(A) synthesis and degradation have been examined in Escherichia coli cells made permeable to nucleotides by treatment with toluene. Although newly synthesized poly(A) is normally rapidly degraded in this system, extraction of the soluble portion of the cell effectively eliminates this process without affecting poly(A) synthesis. Poly(A) synthesis in this system displays many properties associated with poly(A) synthesis by purified poly(A) polymerase in vitro including a lag in polymerization, stimulation by increased ionic strength, and a low Mg2+ optimum. As with the purified Enzyme, this system uses both ADP and ATP as substrates, requires conversion of ATP to ADP, and is strongly inhibited by dADP, orthophosphate, and pyrophosphate. In contrast to the purified poly(A) polymerase, the permeable cell system displays some properties suggestive of in vivo poly(A) metabolism. Thus, the permeable cells require an endogenous RNA primer for activity, the poly(A) product remains with the cells, and the reaction is greatly stimulated by polyamines. This system should prove extremely useful for studies of poly(A) metabolism in E. coli. A surprising feature of these studies was the finding that mutant strains deficient in polynucleotide phosphorylase were unable to synthesize poly(A). The possible roles of polynucleotide phosphorylase and poly(A) in E. coli are discussed.

Figures
Products