1. Academic Validation
  2. Differential susceptibility of primary cultured human skin cells to hypericin PDT in an in vitro model

Differential susceptibility of primary cultured human skin cells to hypericin PDT in an in vitro model

  • J Photochem Photobiol B. 2015 Aug;149:249-56. doi: 10.1016/j.jphotobiol.2015.06.009.
A Popovic 1 T Wiggins 1 L M Davids 1
Affiliations

Affiliation

  • 1 Redox Laboratory, Dept Human Biology, Rm 6.02.2, Level 6, Anatomy Bldg, University of Cape Town Medical School, Anzio Rd, Observatory 7925, Cape Town, South Africa.
Abstract

Skin Cancer is the most common Cancer worldwide, and its incidence rate in South Africa is increasing. Photodynamic therapy (PDT) has been shown to be an effective treatment modality, through topical administration, for treatment of non-melanoma skin cancers. Our group investigates hypericin-induced PDT (HYP-PDT) for the treatment of both non-melanoma and melanoma skin cancers. However, a prerequisite for effective Cancer treatments is efficient and selective targeting of the tumoral cells with minimal collateral damage to the surrounding normal cells, as it is well established that Cancer therapies have bystander effects on normal cells in the body, often causing undesirable side effects. The aim of this study was to investigate the cellular and molecular effects of HYP-PDT on normal primary human keratinocytes (Kc), melanocytes (Mc) and fibroblasts (Fb) in an in vitro tissue culture model which represented both the epidermal and dermal cellular compartments of human skin. Cell viability analysis revealed a differential cytotoxic response to a range of HYP-PDT doses in all the human skin cell types, showing that Fb (LD50=1.75μM) were the most susceptible to HYP-PDT, followed by Mc (LD50=3.5μM) and Kc (LD50>4μM HYP-PDT) These results correlated with the morphological analysis which displayed distinct morphological changes in Fb and Mc, 24h post treatment with non-lethal (1μM) and lethal (3μM) doses of HYP-PDT, but the highest HYP-PDT doses had no effect on Kc morphology. Fluorescent microscopy displayed cytoplasmic localization of HYP in all the 3 skin cell types and additionally, HYP was excluded from the nuclei in all the cell types. Intracellular ROS levels measured in Fb at 3μM HYP-PDT, displayed a significant 3.8 fold (p<0.05) increase in ROS, but no significant difference in ROS levels occurred in Mc or Kc. Furthermore, 64% (p<0.005) early apoptotic Fb and 20% (p<0.05) early apoptotic Mc were evident; using fluorescence activated cell sorting (FACS), 24h post 3μM HYP-PDT. These results depict a differential response to HYP-PDT by different human skin cells thus highlighting the efficacy and indeed, the potential bystander effect of if administered in vivo. This study contributes toward our knowledge of the cellular response of the epidermis to photodynamic therapies and will possibly enhance the efficacy of future photobiological treatments.

Keywords

Apoptosis; Human skin cells; Hypericin; Photodynamic therapy; ROS.

Figures
Products