1. Academic Validation
  2. The therapeutic potential of cell cycle targeting in multiple myeloma

The therapeutic potential of cell cycle targeting in multiple myeloma

  • Oncotarget. 2017 Jun 28;8(52):90501-90520. doi: 10.18632/oncotarget.18765.
Anke Maes 1 Eline Menu 1 Kim De Veirman 1 Ken Maes 1 Karin Vand Erkerken 1 Elke De Bruyne 1
Affiliations

Affiliation

  • 1 Laboratory of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium.
Abstract

Proper cell cycle progression through the interphase and mitosis is regulated by coordinated activation of important cell cycle proteins (including cyclin-dependent kinases and mitotic kinases) and several checkpoint pathways. Aberrant activity of these cell cycle proteins and checkpoint pathways results in deregulation of cell cycle progression, which is one of the key hallmarks of Cancer. Consequently, intensive research on targeting these cell cycle regulatory proteins identified several candidate small molecule inhibitors that are able to induce cell cycle arrest and even Apoptosis in Cancer cells. Importantly, several of these cell cycle regulatory proteins have also been proposed as therapeutic targets in the plasma cell malignancy multiple myeloma (MM). Despite the enormous progress in the treatment of MM the past 5 years, MM still remains most often incurable due to the development of drug resistance. Deregulated expression of the cyclins D is observed in virtually all myeloma patients, emphasizing the potential therapeutic interest of cyclin-dependent kinase inhibitors in MM. Furthermore, other targets have also been identified in MM, such as microtubules, Kinesin motor proteins, aurora kinases, polo-like kinases and the anaphase promoting complex/cyclosome. This review will provide an overview of the cell cycle proteins and checkpoint pathways deregulated in MM and discuss the therapeutic potential of targeting proteins or protein complexes involved in cell cycle control in MM.

Keywords

anaphase promoting complex/cyclosome; aurora kinases; cell cycle deregulation; cyclin-dependent kinases; multiple myeloma.

Figures
Products