1. Academic Validation
  2. Allyl methyl sulfide, an organosulfur compound alleviates hyperglycemia mediated hepatic oxidative stress and inflammation in streptozotocin - induced experimental rats

Allyl methyl sulfide, an organosulfur compound alleviates hyperglycemia mediated hepatic oxidative stress and inflammation in streptozotocin - induced experimental rats

  • Biomed Pharmacother. 2018 Nov;107:292-302. doi: 10.1016/j.biopha.2018.07.162.
Kathiroli Sujithra 1 Subramani Srinivasan 2 Dhananjayan Indumathi 1 Veerasamy Vinothkumar 1
Affiliations

Affiliations

  • 1 Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, 608 002, Tamilnadu, India.
  • 2 Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, 608 002, Tamilnadu, India; Postgraduate and Research Department of Biochemistry, Government Arts College For Women, Krishnagiri, 635 002, Tamilnadu, India. Electronic address: [email protected].
Abstract

Therapeutic approaches based on dietary compounds obtained from food products to handle diabetes involving oxidative stress and inflammation. Garlic is a common spice and has a long history as a folk remedy. Allyl methyl sulfide (AMS) is a potential garlic-derived organosulfur compound displaying a substantial range of optimistic actions in various diseases. Herein, we investigated the potential role of AMS in ameliorating the effects of oxidative stress and inflammation in the liver of streptozotocin (STZ)-induced experimental rats. Diabetes was induced by single intraperitoneal (i.p.) injection of STZ (40 mg/kg/b.w). STZ-induced hyperglycemic rats received daily intragastric doses of 50, 100 and 200 mg/kg/b.w of the AMS for 30 days. Dietary intervention of AMS (100 mg/kg b.w) resulted in significant attenuation in blood glucose and expression of pro-inflammatory markers TNF-α, IL-6, NF-κB p65 unit and significant elevation in the plasma Insulin level. Moreover, AMS instigated a marked enhance in the levels of hepatic tissue non enzymatic antioxidants and the activities enzymatic antioxidants of diabetic rats with significant decline in lipid peroxides and hydroperoxides formation, serum biomarkers of liver damage, thus representing the protecting efficacy of AMS in hyperglycemic state. The pathological abnormalities in hepatic tissues of diabetic rats were significantly ameliorated by AMS supplementation and offered great support to the biochemical findings. These conclusions explicate the prospective use of AMS as a promising compound against glucotoxicity mediated hepatic oxidative dysfunction in rats. Clinical trials in validating this benefit for optimizing the AMS nutrition are however warranted.

Keywords

Allyl methyl sulfide; Diabetes mellitus; Inflammatory markers; Oxidative stress; Streptozotocin.

Figures
Products