1. Academic Validation
  2. Efficient biofunctionalization of MoS2 nanosheets with peptides as intracellular fluorescent biosensor for sensitive detection of caspase-3 activity

Efficient biofunctionalization of MoS2 nanosheets with peptides as intracellular fluorescent biosensor for sensitive detection of caspase-3 activity

  • J Colloid Interface Sci. 2019 May 1;543:96-105. doi: 10.1016/j.jcis.2019.02.011.
Xiao Li 1 Yuqing Li 1 Qiu Qiu 1 Qirui Wen 1 Qi Zhang 1 Wenjing Yang 1 Lihui Yuwen 2 Lixing Weng 3 Lianhui Wang 4
Affiliations

Affiliations

  • 1 Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
  • 2 Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China. Electronic address: [email protected].
  • 3 School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
  • 4 Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China. Electronic address: [email protected].
Abstract

Intracellular detection of Caspase-3 activity is crucial for the study of cell Apoptosis and Caspase-3 related diseases. Although various nanomaterials-based biosensors have been constructed for this purpose, they often suffer from poor stability or complicated construction due to the lack of a facile and efficient biofunctionalization method, which decreases their sensing performance and limits their use in the complex physiological environments. As novel two-dimentional (2D) nanomaterials, MoS2 nanosheets (NSs) have shown great potential for biosensing due to their unique properties. Herein, we develop a versatile yet facile covalent biofucntionalization strategy of MoS2 NSs by utilizing polydopamine (PDA) as nano-bio interface, and construct an intracellular fluorescent biosensor (MoS2@PDA-PEG-Peptide, MPPP) for the determination of Caspase-3 activity. This covalent biofunctionalization of MoS2 NSs can significantly improve the conjugation efficiency of biomolecules and enhance their stability in complicated environments, which is much better than conventional biofunctionalization by using thiol-metal coordination. Furthermore, this novel Caspase-3 biosensor based on Peptides biofunctionalized MoS2 NSs shows high sensitivity and selectivity for the detection of Caspase-3 with a limit of detection (LOD) of 0.33 ng/mL, and can be used for high-contrast fluorescent imaging of cell Apoptosis.

Keywords

Biosensor; Caspase-3; Covalent biofunctionalization; MoS(2) NSs; Polydopamine.

Figures
Products