1. Academic Validation
  2. The antimicrobial peptide chensinin-1b alleviates the inflammatory response by targeting the TLR4/NF-κB signaling pathway and inhibits Pseudomonas aeruginosa infection and LPS-mediated sepsis

The antimicrobial peptide chensinin-1b alleviates the inflammatory response by targeting the TLR4/NF-κB signaling pathway and inhibits Pseudomonas aeruginosa infection and LPS-mediated sepsis

  • Biomed Pharmacother. 2023 Aug 1;165:115227. doi: 10.1016/j.biopha.2023.115227.
Zhenjia Li 1 Wenzhi Qu 1 Dongdong Zhang 1 Yue Sun 2 Dejing Shang 3
Affiliations

Affiliations

  • 1 School of Life Science, Liaoning Normal University, Dalian 116081, China.
  • 2 School of Life Science, Liaoning Normal University, Dalian 116081, China; Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China. Electronic address: [email protected].
  • 3 School of Life Science, Liaoning Normal University, Dalian 116081, China; Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China. Electronic address: [email protected].
Abstract

Excessive inflammatory responses are a major contributor to the high mortality associated with sepsis, a prevalent global complication. Therefore, the potential therapeutic strategy for sepsis involves targeting macrophages and reducing proinflammatory cytokine release. Chensinin-1b, an analog of the natural antimicrobial peptide derived from Rana chensinensis skin secretion, exhibits broad-spectrum Antibacterial activity and adopts a random coil conformation in both PBS and membrane solution. By efficiently neutralizing LPS, chensinin-1b holds promise in alleviating LPS-induced inflammatory responses. In this study, we established a mouse septic shock model by exposing mice to multiple-drug-resistant Pseudomonas aeruginosa, as well as an endotoxin-mediated sepsis model induced by LPS. Administering chensinin-1b significantly prolonged the survival of the experimental mice, concurrently mitigating inflammatory responses and reducing organ damage. Additionally, we investigated the anti-inflammatory mechanism of chensinin-1b using a constructed LPS-induced mouse macrophage RAW264.7 inflammatory model. Our findings demonstrated that chensinin-1b effectively mitigated the excessive activation of the TLR4/NF-κB signaling pathway by directly neutralizing extracellular LPS, thus ameliorating the inflammatory response. Moreover, upon blocking the TLR4 signaling pathway, chensinin-1b further reduced the release of proinflammatory cytokines induced by LPS, indicating alternative modes of regulation. Notably, chensinin-1b rapidly entered RAW264.7 cells within 30 min via endocytosis, diffusing into the cytoplasm while retaining its anti-inflammatory properties intracellularly. Although further investigations are warranted to comprehensively elucidate the intracellular anti-inflammatory mechanism of chensinin-1b, our findings substantiate its possession of anti-inflammatory properties both intracellularly and extracellularly. Thus, chensinin-1b emerges as a promising candidate for mitigating excessive inflammatory responses associated with sepsis.

Keywords

Anti-inflammatory; Antimicrobial peptide; NF-κB; Sepsis; TLR4.

Figures
Products
Inhibitors & Agonists
Other Products