1. Metabolic Enzyme/Protease
  2. PGC-1α
  3. SR-18292

SR-18292 

Cat. No.: HY-101491 Purity: >98.0%
Handling Instructions

SR-18292 is a PPAR gamma coactivator-1α (PGC-1α) inhibitor, which increases PGC-1α acetylation, suppresses gluconeogenic gene expression and reduces glucose production in hepatocytes.

For research use only. We do not sell to patients.

SR-18292 Chemical Structure

SR-18292 Chemical Structure

CAS No. : 2095432-55-4

Size Price Stock Quantity
Free Sample (0.5-1 mg)   Apply now  
5 mg USD 70 In-stock
Estimated Time of Arrival: December 31
10 mg USD 110 In-stock
Estimated Time of Arrival: December 31
25 mg USD 230 In-stock
Estimated Time of Arrival: December 31
50 mg USD 390 In-stock
Estimated Time of Arrival: December 31
100 mg USD 690 In-stock
Estimated Time of Arrival: December 31
200 mg   Get quote  
500 mg   Get quote  

* Please select Quantity before adding items.

Customer Review

Based on 1 publication(s) in Google Scholar

Top Publications Citing Use of Products

Publications Citing Use of MCE SR-18292

  • Biological Activity

  • Protocol

  • Purity & Documentation

  • References

  • Customer Review

Description

SR-18292 is a PPAR gamma coactivator-1α (PGC-1α) inhibitor, which increases PGC-1α acetylation, suppresses gluconeogenic gene expression and reduces glucose production in hepatocytes.

IC50 & Target

PGC-1α[1]

In Vitro

The transcriptional coactivator PGC-1α plays a pivotal role in energy homeostasis by co-activating transcription factors that regulate fat and glucose metabolism. SR-18292 increases the interaction of PGC-1α with the acetyl transferase GCN5 and reduces co-activation of nuclear hormone receptor HNF4α by PGC-1α. SR-18292 suppresses HNF4α/PGC-1α gluconeogenic transcriptional function. By increasing the interaction of GCN5 with PGC-1α, SR-18292 increases the acetylation of specific PGC-1α lysine residues that might subsequently decrease its gluconeogenic activity[1].

In Vivo

SR-18292 reduces fasting blood glucose, increases hepatic insulin sensitivity and improves glucose homeostasis in diabetic mice. The high fat diet (HFD) fed mice, a dietary model of obesity and T2D, are treated with SR-18292 (45mg/kg) via I.P. injection for 3 consecutive days and again on day 4 before measuring fasting blood glucose. Strikingly, mice that are treated with SR-18292 have significantly lower levels of fasting blood glucose concentrations compared to matched vehicle-treated control mice. The induction of gluconeogenic gene expression is a regulatory component of the response to fasting. Importantly, gluconeogenic gene expression, specifically that of Pck1, is inhibited in livers isolated from mice treated with SR-18292[1].

Molecular Weight

366.50

Formula

C₂₃H₃₀N₂O₂

CAS No.

2095432-55-4

SMILES

CC1=CC=C(CN(C(C)(C)C)CC(O)COC2=CC=CC3=C2C=CN3)C=C1

Shipping

Room temperature in continental US; may vary elsewhere

Storage

-80°C, stored under nitrogen

*The compound is unstable in solutions, freshly prepared is recommended.

Solvent & Solubility
In Vitro: 

DMSO : ≥ 100 mg/mL (272.85 mM)

*"≥" means soluble, but saturation unknown.

Preparing
Stock Solutions
Concentration Solvent Mass 1 mg 5 mg 10 mg
1 mM 2.7285 mL 13.6426 mL 27.2851 mL
5 mM 0.5457 mL 2.7285 mL 5.4570 mL
10 mM 0.2729 mL 1.3643 mL 2.7285 mL
*Please refer to the solubility information to select the appropriate solvent.
In Vivo:
  • 1.

    Add each solvent one by one:  10% DMSO    40% PEG300    5% Tween-80    45% saline

    Solubility: ≥ 2.5 mg/mL (6.82 mM); Clear solution

  • 2.

    Add each solvent one by one:  10% DMSO    90% (20% SBE-β-CD in saline)

    Solubility: ≥ 2.5 mg/mL (6.82 mM); Clear solution

  • 3.

    Add each solvent one by one:  10% DMSO    90% corn oil

    Solubility: ≥ 2.5 mg/mL (6.82 mM); Clear solution

*All of the co-solvents are provided by MCE.
References
Kinase Assay
[1]

For determination of GCN5 HAT activity U-2 OS cells overexpressing Ad-GCN5 are treated with SR-18292 (10 μM) for 18 h. Cells are lysed with buffer B (20 mM HEPES-KOH (pH 7.9), 125 mM NaCl, 1 mM EDTA, 1 mM DTT, 1% IGEPAL (v/v), 10% glycerol (v/v), 5 mM NaF, 5 mM β-glycerophosphate, 5 mM sodium butyrate and 10 mM nicotinamide), supplemented with Protease Inhibitor Cocktail. FLAG-GCN5 is immunoprecipitated with FLAG beads overnight at 4°C following multiple washes with lysis buffer. GCN5 is then eluted using 3× FLAG peptide and the purified protein is used to determine HAT activity using the HAT Inhibitor Screening Assay Kit[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Assay
[1]

For cell viability determination using MTT, primary hepatocytes are seeded on a 96-well plate at 20,000 cells/well. The following day cells are treated at different doses, as indicated, for 18 h treatment of primary hepatocytes. 5 μL of MTT reagent (5 mg/mL) is then added to each well (n=4/dose) and cells are incubated for 1h at 37°C. Medium is discarded and dye is extracted by adding 100 μL DMSO to each well. For cytotoxicity determination using ToxiLight Non-destructive Cytotoxicity Bioassay, hepatocytes are seeded on a 6-well plate and treated with either SR-18292 (20 μM) or Cisplatin (50 μM) for 18 h. 50 μL of medium is collected and used to measure cellular toxicity by adding 100 of adenylate kinase detection reagent and incubating 5 min at RT before measuring luminescence[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Administration
[1]

Mice[1]
For in vivo studies with DIO mice, males 6-8 weeks old are fed high fat diet (HFD) for the indicated time. For drug administration, SR-18292 (45 mg/kg) is injected via I.P. for 3 days between 4-5 pm and food is removed on day 3 at 5pm. The following morning (day 4) SR-18292 is injected again (for a total of 4 injections) and blood glucose is measured after 3 hours. Injection volume does not exceed 275 μL per mouse[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

References

Purity: >98.0%

  • No file chosen (Maximum size is: 1024 Kb)
  • If you have published this work, please enter the PubMed ID.
  • Your name will appear on the site.
  • Molarity Calculator

  • Dilution Calculator

The molarity calculator equation

Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

Mass   Concentration   Volume   Molecular Weight *
= × ×

The dilution calculator equation

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)

This equation is commonly abbreviated as: C1V1 = C2V2

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)
× = ×
C1   V1   C2   V2

Inquiry Online

Your information is safe with us. * Required Fields.

Product name

 

Salutation

Applicant name *

 

Email address *

Phone number *

 

Organization name *

Country or Region *

 

Requested quantity *

Remarks

Bulk Inquiry

Inquiry Information

Product Name:
SR-18292
Cat. No.:
HY-101491
Quantity: