1. Academic Validation
  2. Two mechanisms of action of the adamantane derivative IEM-1460 at human AMPA-type glutamate receptors

Two mechanisms of action of the adamantane derivative IEM-1460 at human AMPA-type glutamate receptors

  • Br J Pharmacol. 2005 Jul;145(5):656-63. doi: 10.1038/sj.bjp.0706233.
Friedrich Schlesinger 1 Derk Tammena Klaus Krampfl Johannes Bufler
Affiliations

Affiliation

  • 1 Neurological Department of the Medical School of Hannover, Karl-Neuberg Str. 1, 30623 Hannover, Germany. [email protected]
Abstract

1. Antagonizing glutamatergic neurotransmission by blockade of AMPA-type glutamate receptors (GluR) is a promising pharmacological strategy for neuroprotection in neurodegenerative diseases and acute treatment of stroke. 2. We investigated the interaction of the adamantane derivative IEM-1460 with human wild-type and mutant AMPA-type GluR channels. Different recombinant homooligomeric human AMPA-type GluR channels and a rat nondesensitizing mutant GluR (GluR2 L504Y) channel were expressed in HEK293 cells and investigated using the patch-clamp technique in combination with ultrafast agonist application. 3. When IEM-1460 was coapplied with glutamate, an open channel block mechanism was observed at slow desensitizing GluR2 flip (>/=0.1 mM IEM-1460) and nondesensitizing GluR2 L504Y channels (>/=1 microM IEM-1460). 4. A competitive block of AMPA-type channels was observed with IC(50) values for the dose block curves of 0.1 mM IEM-1460 at human unmutated and 10 microM IEM-1460 at mutant GluR channels. 5. Nondesensitizing GluR2 L504Y channels were used to further characterize the block mechanism. After equilibration with the agonist, a current decay upon coapplication of glutamate and IEM-1460 was observed. The recovery from block was independent of the glutamate and IEM-1460 concentration. The extent of current inhibition as well as the time constant of current decay upon addition of the blocker to the test solution were dependent on agonist concentration; this strongly points to an additional competitive-like block mechanism of IEM-1460 at human AMPA-type GluR channels. 6. The data were interpreted in the frame of a molecular scheme with two binding sites of IEM-1460 at the receptor, one at the unliganded resting and the other at the fully liganded open state of the channels.

Figures
Products