1. Academic Validation
  2. Structure of the deacetylase LpxC bound to the antibiotic CHIR-090: Time-dependent inhibition and specificity in ligand binding

Structure of the deacetylase LpxC bound to the antibiotic CHIR-090: Time-dependent inhibition and specificity in ligand binding

  • Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18433-8. doi: 10.1073/pnas.0709412104.
Adam W Barb 1 Ling Jiang Christian R H Raetz Pei Zhou
Affiliations

Affiliation

  • 1 Department of Biochemistry, Duke University Medical Center, Durham NC 27710.
Abstract

The UDP-3-O-(R-3-hydroxyacyl)-N-acetylglucosamine deacetylase LpxC is an essential Enzyme of lipid A biosynthesis in Gram-negative bacteria and a promising Antibiotic target. CHIR-090, the most potent LpxC inhibitor discovered to date, displays two-step time-dependent inhibition and kills a wide range of Gram-negative pathogens as effectively as ciprofloxacin or tobramycin. In this study, we report the solution structure of the LpxC-CHIR-090 complex. CHIR-090 exploits conserved features of LpxC that are critical for catalysis, including the hydrophobic passage and essential active-site residues. CHIR-090 is adjacent to, but does not occupy, the UDP-binding pocket of LpxC, suggesting that a fragment-based approach may facilitate further optimization of LpxC inhibitors. Additionally, we identified key residues in the Insert II hydrophobic passage that modulate time-dependent inhibition and CHIR-090 resistance. CHIR-090 shares a similar, although previously unrecognized, chemical scaffold with other small-molecule Antibiotics such as L-161,240 targeting LpxC, and provides a template for understanding the binding mode of these inhibitors. Consistent with this model, we provide evidence that L-161,240 also occupies the hydrophobic passage.

Figures
Products