1. Academic Validation
  2. Parstatin: a cryptic peptide involved in cardioprotection after ischaemia and reperfusion injury

Parstatin: a cryptic peptide involved in cardioprotection after ischaemia and reperfusion injury

  • Cardiovasc Res. 2009 Jul 15;83(2):325-34. doi: 10.1093/cvr/cvp122.
Jennifer L Strande 1 Michael E Widlansky Nikos E Tsopanoglou Jidong Su JingLi Wang Anna Hsu Kasi V Routhu John E Baker
Affiliations

Affiliation

  • 1 Division of Cardiovascular Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, USA. [email protected]
Abstract

Aims: Thrombin activates Protease-activated Receptor 1 by proteolytic cleavage of the N-terminus. Although much research has focused on the activated receptor, little is known about the 41-amino acid N-terminal peptide (parstatin). We hypothesized that parstatin would protect the heart against ischaemia-reperfusion injury.

Methods and results: We assessed the protective role of parstatin in an in vivo and in vitro rat model of myocardial ischaemia-reperfusion injury. Parstatin treatment before, during, and after ischaemia decreased infarct size by 26%, 23%, and 18%, respectively, in an in vivo model of ischaemia-reperfusion injury. Parstatin treatment immediately before ischaemia decreased infarct size by 65% and increased recovery in ventricular function by 23% in an in vitro model. We then assessed whether parstatin induced cardioprotection by activation of a Gi-protein-dependent pathway. Gi-protein inactivation by pertussis toxin completely abolished the cardioprotective effects. The cardioprotective effects were also abolished by inhibition of nitric oxide synthase (NOS), extracellular signal-regulated kinases 1/2 (ERK1/2), p38 mitogen-activated protein kinase (p38 MAPK), and K(ATP) channels in vitro. Furthermore, parstatin increased coronary flow and decreased perfusion pressure in the isolated heart. The vasodilatory properties of parstatin were confirmed in rat coronary arterioles.

Conclusion: A single treatment of parstatin administered prior to ischaemia confers immediate cardioprotection by recruiting the Gi-protein activation pathway including p38 MAPK, ERK1/2, NOS, and K(ATP) channels. Parstatin exerts effects on both the cardiomyocytes and the coronary circulation to induce cardioprotection. This suggests a potential therapeutic role of parstatin in the treatment of cardiac injury resulting from ischaemia and reperfusion.

Figures