1. Academic Validation
  2. 5-Lipoxygenase-activating protein (FLAP) inhibitor MK-0591 prevents aberrant alveolarization in newborn mice exposed to 85% oxygen in a dose- and time-dependent manner

5-Lipoxygenase-activating protein (FLAP) inhibitor MK-0591 prevents aberrant alveolarization in newborn mice exposed to 85% oxygen in a dose- and time-dependent manner

  • Lung. 2011 Feb;189(1):43-50. doi: 10.1007/s00408-010-9264-1.
Min Soo Park 1 Myung Hyun Sohn Kyu-Earn Kim Moon Sung Park Ran Namgung Chul Lee
Affiliations

Affiliation

  • 1 Department of Pediatrics, Yonsei University College of Medicine, 250 Seongsanno (134 Sinchon-dong) Seodaemun-gu, Seoul 120-752, Korea. [email protected]
Abstract

Bronchopulmonary dysplasia is characterized by prolonged oxygen dependency due to compromised gas-exchange capability. This is attributable mainly to inadequate and aberrant alveolarization resulting from insults like hyperoxia. Leukotrienes are associated with hyperoxia-induced inhibition of alveolarization. We hypothesized that a 5-lipoxygenase-activating protein (FLAP) inhibitor given while newborn mice were exposed to 85% oxygen would prevent aberrant alveolarization in a dose- and time-dependent manner. Newborn mice were exposed to either room air or hyperoxia for 14 days. Pups were treated with either vehicle or MK-0591 10, 20, or 40 mg/kg subcutaneously daily for days 1-4, 5-9, or 10-14. On day 14, the lungs were inflated, fixed, and stained for histopathological and morphometric analyses. Hyperoxia groups treated with MK-0591 20 or 40 mg/kg during days P1-P4 or P10-P14 showed alveolarization that resembled that of room air controls while untreated hyperoxia groups showed definite evidence of aberrant alveolarization but no inflammation. In a hyperoxia-exposed newborn mice model, a FLAP Inhibitor given during critical window periods may prevent aberration of alveolarization in a dose- and time-dependent manner.

Figures
Products