1. Academic Validation
  2. Smilagenin attenuates beta amyloid (25-35)-induced degeneration of neuronal cells via stimulating the gene expression of brain-derived neurotrophic factor

Smilagenin attenuates beta amyloid (25-35)-induced degeneration of neuronal cells via stimulating the gene expression of brain-derived neurotrophic factor

  • Neuroscience. 2012 May 17;210:275-85. doi: 10.1016/j.neuroscience.2012.03.017.
R Zhang 1 Z Wang P A Howson Z Xia S Zhou E Wu Z Xia Y Hu
Affiliations

Affiliation

  • 1 Research Laboratory of Cell Regulation, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China.
Abstract

The development of drugs that attenuate neurodegeneration is important for the treatment of Alzheimer's disease (AD). We previously found that smilagenin (SMI), a steroidal sapogenin from traditional Chinese medicinal herbs improves memory in animal models, is neither a cholinesterase inhibitor nor a glutamate receptor antagonist, but can significantly elevate the declined muscarinic receptor (M receptor) density. In this article, to clarify whether SMI represents a new approach for treating neurodegeneration disease, we first demonstrate that SMI pretreatment significantly attenuates the neurodegenerative changes induced by beta amyloid 25-35 (Aβ(25-35)) in cultured rat cortical neurons, including decreased cholinergic neuron number, shortened neurite outgrowth length, and declined M receptor density. Brain-derived neurotrophic factor (BDNF) protein levels in the culture medium were also decreased by Aβ(25-35) and significantly elevated by SMI. Parallel experiments revealed that when the Trk Receptors were inhibited by K252a or the action of BDNF was inhibited by a neutralizing anti-BDNF antibody, the effects of SMI on the Aβ(25-35)-induced neurodegeneration in rat cortical neurons were almost completely abolished. In the all-trans retinoic acid (RA)-differentiated SH-SY5Y neuroblastoma cells, the BDNF transcription rate measured by a nuclear run-on assay was significantly suppressed by Aβ(25-35) and elevated by SMI, but the BDNF degradation rate measured by half-life determination was unchanged by Aβ(25-35) and SMI. Transcript analysis of the SH-SY5Y cells using quantitative RT-PCR (qRT-PCR) showed that the IV and VI transcripts of BDNF mRNA were significantly decreased by Aβ(25-35) and elevated by SMI. Taken together, we conclude that SMI attenuates Aβ(25-35)-induced neurodegeneration in cultured rat cortical neurons and SH-SY5Y cells mainly through stimulating BDNF mRNA transcription implicating that SMI may represent a novel therapeutic strategy for AD.

Figures
Products