1. Academic Validation
  2. Coenzyme Q0 regulates NFκB/AP-1 activation and enhances Nrf2 stabilization in attenuation of LPS-induced inflammation and redox imbalance: Evidence from in vitro and in vivo studies

Coenzyme Q0 regulates NFκB/AP-1 activation and enhances Nrf2 stabilization in attenuation of LPS-induced inflammation and redox imbalance: Evidence from in vitro and in vivo studies

  • Biochim Biophys Acta. 2016 Feb;1859(2):246-61. doi: 10.1016/j.bbagrm.2015.11.001.
Hsin-Ling Yang 1 Ming-Wei Lin 1 Mallikarjuna Korivi 1 Jia-Jiuan Wu 1 Chun-Huei Liao 1 Chia-Ting Chang 1 Jiunn-Wang Liao 2 You-Cheng Hseu 3
Affiliations

Affiliations

  • 1 Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung 40402, Taiwan.
  • 2 Graduate Institute of Veterinary Pathology, National Chung Hsing University, Taichung 402, Taiwan.
  • 3 Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung 40402, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan. Electronic address: [email protected].
Abstract

Coenzyme Q (CoQ) analogs with variable number of isoprenoid units have been demonstrated as anti-inflammatory and antioxidant/pro-oxidant molecules. In this study we used CoQ0 (2,3-dimethoxy-5-methyl-1,4-benzoquinone, zero isoprenoid side-chains), a novel quinone derivative, and investigated its molecular actions against LPS-induced inflammation and redox imbalance in murine RAW264.7 macrophages and mice. In LPS-stimulated macrophages, non-cytotoxic concentrations of CoQ0 (2.5-10 μM) inhibited iNOS/COX-2 protein expressions with subsequent reductions of NO, PGE2, TNF-α and IL-1β secretions. This inhibition was reasoned by suppression of NFκB (p65) activation, and inhibition of AP-1 (c-Jun., c-Fos, ATF2) translocation. Our findings indicated that IKKα-mediated I-κB degradation and MAPK-signaling are involved in regulation of NFκB/AP-1 activation. Furthermore, CoQ0 triggered HO-1 and NQO-1 genes through increased Nrf2 nuclear translocation and Nrf2/ARE-signaling. This phenomenon was confirmed by diminished CoQ0 protective effects in Nrf2 knockdown cells, where LPS-induced NO, PGE2, TNF-α and IL-1β productions remained high. Molecular evidence revealed that CoQ0 enhanced Nrf2 steady-state level at both transcriptional and translational levels. CoQ0-induced Nrf2 activation appears to be regulated by ROS-JNK-signaling cascades, as evidenced by suppressed Nrf2 activation upon treatment with pharmacological inhibitors of ROS (N-acetylcysteine) and JNK (SP600125). Besides, oral administration of CoQ0 (5 mg/kg) suppressed LPS-induced (1 mg/kg) induction of iNOS/COX-2 and TNF-α/IL-1β through tight regulation of NFκB/Nrf2 signaling in mice liver and spleen. Our findings conclude that pharmacological actions of CoQ0 are mediated via inhibition of NFκB/AP-1 activation and induction of Nrf2/ARE-signaling. Owing to its potent anti-inflammatory and antioxidant properties, CoQ0 could be a promising candidate to treat inflammatory disorders.

Keywords

Antioxidant response element; Coenzyme Q(0); Inflammation; Macrophages; NFκB; Nrf2.

Figures
Products