1. Academic Validation
  2. Restriction of hepatitis B virus replication by c-Abl-induced proteasomal degradation of the viral polymerase

Restriction of hepatitis B virus replication by c-Abl-induced proteasomal degradation of the viral polymerase

  • Sci Adv. 2019 Feb 6;5(2):eaau7130. doi: 10.1126/sciadv.aau7130.
Lidan Hou 1 2 Jie Zhao 3 Shaobing Gao 1 4 Tong Ji 3 Tianyu Song 1 2 Yining Li 1 Jingjie Wang 1 Chenlu Geng 1 Min Long 1 Jiang Chen 3 Hui Lin 3 Xiujun Cai 3 Yong Cang 2
Affiliations

Affiliations

  • 1 Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China.
  • 2 School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
  • 3 Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China.
  • 4 Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450008, China.
Abstract

About 257 million people with chronic Infection of hepatitis B virus (HBV) worldwide are at high risk of developing terminal liver diseases. Reactivation of virus replication has been frequently reported in those patient populations receiving imatinib (an Abl kinase inhibitor) or bortezomib (a Proteasome Inhibitor) to treat concurrent diseases, but the underlying mechanism for this reactivation is unknown. We report that the HBV polymerase protein is recruited by Cdt2 to the cullin-RING ligase 4 (CRL4) for ubiquitination and Proteasome degradation and that this process is stimulated by the c-Abl nonreceptor tyrosine kinase. Genetic ablation of the Abl-CRL4Cdt2 axis or pharmaceutical inhibition of this process stabilizes HBV polymerase protein and increases viral loads in HBV-infected liver Cancer cell lines. Our study reveals a kinase-dependent activation of CRL4 ubiquitin ligase that can be targeted for blocking HBV replication.

Figures
Products