1. Academic Validation
  2. N-acetylserotonin Derivative Exerts a Neuroprotective Effect by Inhibiting the NLRP3 Inflammasome and Activating the PI3K/Akt/Nrf2 Pathway in the Model of Hypoxic-Ischemic Brain Damage

N-acetylserotonin Derivative Exerts a Neuroprotective Effect by Inhibiting the NLRP3 Inflammasome and Activating the PI3K/Akt/Nrf2 Pathway in the Model of Hypoxic-Ischemic Brain Damage

  • Neurochem Res. 2021 Feb;46(2):337-348. doi: 10.1007/s11064-020-03169-x.
Xing Luo 1 2 Honglan Zeng 1 Chengzhi Fang 3 Bing-Hong Zhang 4
Affiliations

Affiliations

  • 1 Departments of Neonatology, Renmin Hospital of Wuhan University, Ziyang Road Wuchang District, No. 99 Jiefang Road, Wuhan, 430060, Hubei Province, China.
  • 2 Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.
  • 3 Departments of Neonatology, Renmin Hospital of Wuhan University, Ziyang Road Wuchang District, No. 99 Jiefang Road, Wuhan, 430060, Hubei Province, China. [email protected].
  • 4 Departments of Neonatology, Renmin Hospital of Wuhan University, Ziyang Road Wuchang District, No. 99 Jiefang Road, Wuhan, 430060, Hubei Province, China. [email protected].
Abstract

Neonatal hypoxic-ischemic encephalopathy (HIE) is one of the main causes of neonatal disability and death. As a derivative of N-acetylserotonin, N-[2-(5-hydroxy-1H-indol-3-yl) ethyl]-2-oxopiperidine-3-carboxamide (HIOC) can easily cross the blood-brain barrier and have a long half-life in the brain. In this study, the hypothesis was verified that HIOC plays a neuroprotective role in the HIE model and its potential mechanism was evaluated. Firstly, an HIE rat model was established to deliver HIOC, revealing that it can reduce cerebral infarction volume, cerebral edema, and neuronal Apoptosis. The results of immunofluorescence staining, Western blots and RT-PCR further showed that HIOC could inhibit the activation of the NLRP3 inflammasome and the expression of related proteins. Finally, the activation of the phosphatidylinositol-3-kinase (PI3K)/Akt/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway by HIOC was verified in vitro and in vivo. It was discovered that HIOC could increase the nuclear translocation of Nrf2, and that this induction can be reversed by the PI3K/Akt pathway inhibitor LY294002. In general terms, the neuroprotective effect of HIOC was confirmed in the HIE model, which is related to the activation of the PI3K/Akt/Nrf2 signal pathway and the inhibition of the NLRP3 inflammasome.

Keywords

Hypoxic-ischemic encephalopathy; N-[2-(5-hydroxy-1H-indol-3-yl) ethyl]-2-oxopiperidine-3-carboxamide; NLRP3 inflammasome; Nrf2.

Figures
Products