1. Academic Validation
  2. Hypoxia-induced mitochondrial abnormalities in cells of the placenta

Hypoxia-induced mitochondrial abnormalities in cells of the placenta

  • PLoS One. 2021 Jan 12;16(1):e0245155. doi: 10.1371/journal.pone.0245155.
Philippe Vangrieken 1 2 Salwan Al-Nasiry 3 Aalt Bast 1 Pieter A Leermakers 1 Christy B M Tulen 1 Ger M J Janssen 4 Iris Kaminski 1 Iris Geomini 1 Titus Lemmens 1 Paul M H Schiffers 4 Frederik J van Schooten 1 Alex H V Remels 1
Affiliations

Affiliations

  • 1 Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands.
  • 2 Department of Internal Medicine, School for Cardiovascular Diseases (CARIM), Maastricht University Medical Center+, Maastricht, The Netherlands.
  • 3 Department of Obstetrics and Gynaecology, School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center+, Maastricht, The Netherlands.
  • 4 Department of Pharmacology and Toxicology, School for Cardiovascular Diseases (CARIM), Maastricht University Medical Center+, Maastricht, The Netherlands.
Abstract

Introduction: Impaired utero-placental perfusion is a well-known feature of early preeclampsia and is associated with placental hypoxia and oxidative stress. Although aberrations at the level of the mitochondrion have been implicated in PE pathophysiology, whether or not hypoxia-induced mitochondrial abnormalities contribute to placental oxidative stress is unknown.

Methods: We explored whether abnormalities in Mitochondrial Metabolism contribute to hypoxia-induced placental oxidative stress by using both healthy term placentae as well as a trophoblast cell line (BeWo cells) exposed to hypoxia. Furthermore, we explored the therapeutic potential of the antioxidants MitoQ and quercetin in preventing hypoxia-induced placental oxidative stress.

Results: Both in placental explants as well as BeWo cells, hypoxia resulted in reductions in mitochondrial content, decreased abundance of key molecules involved in the electron transport chain and increased expression and activity of glycolytic enzymes. Furthermore, expression levels of key regulators of mitochondrial biogenesis were decreased while the abundance of constituents of the Mitophagy, Autophagy and mitochondrial fission machinery was increased in response to hypoxia. In addition, placental hypoxia was associated with increased oxidative stress, inflammation, and Apoptosis. Moreover, experiments with MitoQ revealed that hypoxia-induced Reactive Oxygen Species originated from the mitochondria in the trophoblasts.

Discussion: This study is the first to demonstrate that placental hypoxia is associated with mitochondrial-generated Reactive Oxygen Species and significant alterations in the molecular pathways controlling mitochondrial content and function. Furthermore, our data indicate that targeting mitochondrial oxidative stress may have therapeutic benefit in the management of pathologies related to placental hypoxia.

Figures
Products