1. Academic Validation
  2. Metformin-Enhanced Cardiac AMP-Activated Protein Kinase/Atrogin-1 Pathways Inhibit Charged Multivesicular Body Protein 2B Accumulation in Ischemia-Reperfusion Injury

Metformin-Enhanced Cardiac AMP-Activated Protein Kinase/Atrogin-1 Pathways Inhibit Charged Multivesicular Body Protein 2B Accumulation in Ischemia-Reperfusion Injury

  • Front Cell Dev Biol. 2021 Feb 5;8:621509. doi: 10.3389/fcell.2020.621509.
Tian Li 1 Yue Yin 1 Nan Mu 1 Yishi Wang 1 Manling Liu 1 Mai Chen 2 Wenhua Jiang 3 Lu Yu 4 Yan Li 5 Heng Ma 1
Affiliations

Affiliations

  • 1 Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China.
  • 2 Department of Cardiovascular Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
  • 3 Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China.
  • 4 Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
  • 5 Department of Cardiovascular Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
Abstract

Background: Cardiac autophagic flux is impaired during myocardial ischemia/reperfusion (MI/R). Impaired autophagic flux may exacerbate MI/R injury. Charged multivesicular body protein 2B (CHMP2B) is a subunit of the endosomal sorting complex required for transport (ESCRT-III) complex that is required for Autophagy. However, the reverse role of CHMP2B accumulation in Autophagy and MI/R injury has not been established. The objective of this article is to elucidate the roles of AMP-activated protein kinase (AMPK)/atrogin-1 pathways in inhibiting CHMP2B accumulation in ischemia-reperfusion injury. Methods: Male C57BL/6 mice (3-4 months) and H9c2 cardiomyocytes were used to evaluate MI/R and hypoxia/reoxygenation (H/R) injury in vivo and in vitro, respectively. MI/R was built by a left lateral thoracotomy and occluded the left anterior descending artery. H9c2 cells were firstly treated in 95% N2 and 5% CO2 for 15 h and reoxygenation for 1 h. Metformin (100 mg/kg/d) and CHMP2B (Ad-CHMP2B) transfected adenoviruses were administered to the mice. The H9c2 cells were treated with metformin (2.5 mM), MG-132 (10 μM), bafilomycin A1 (10 nM), and compound C (20 μM). Results: Autophagic flux was found to be inhibited in H/R-treated cardiomyocytes and MI/R mice, with elevated cardiac CHMP2B accumulation. Upregulated CHMP2B levels in the in vivo and in vitro experiments were shown to inhibit autophagic flux leading to the deterioration of H/R-cardiomyocytes and MI/R injury. This finding implies that CHMP2B accumulation increases the risk of myocardial ischemia. Metformin suppressed CHMP2B accumulation and ameliorated H/R-induced autophagic dysfunction by activating AMPK. Activated AMPK upregulated the messenger RNA expression and protein levels of atrogin-1, a muscle-specific ubiquitin ligase, in the myocardium. Atrogin-1 significantly enhanced the interaction between atrogin-1 and CHMP2B, therefore, promoting CHMP2B degradation in the MI/R myocardium. Finally, this study revealed that metformin-inhibited CHMP2B accumulation induced autophagic impairment and ischemic susceptibility in vivo through the AMPK-regulated CHMP2B degradation by atrogin-1. Conclusion: Impaired CHMP2B clearance in vitro and in vivo inhibits autophagic flux and weakens the myocardial ischemic tolerance. Metformin treatment degrades CHMP2B through the AMPK-atrogin-1-dependent pathway to maintain the homeostasis of autophagic flux. This is a novel mechanism that enriches the understanding of cardioprotection.

Keywords

AMPK; CHMP2B; atrogin-1; autophagic flux; metformin; myocardial ischemia/reperfusion.

Figures
Products