1. Academic Validation
  2. Exosomal circRNA Scm-like with four malignant brain tumor domains 2 (circ-SFMBT2) enhances the docetaxel resistance of prostate cancer via the microRNA-136-5p/tribbles homolog 1 pathway

Exosomal circRNA Scm-like with four malignant brain tumor domains 2 (circ-SFMBT2) enhances the docetaxel resistance of prostate cancer via the microRNA-136-5p/tribbles homolog 1 pathway

  • Anticancer Drugs. 2022 Oct 1;33(9):871-882. doi: 10.1097/CAD.0000000000001365.
Xiaoliang Tan 1 Xiaosen Song Bo Fan Ming Li Aili Zhang Long Pei
Affiliations

Affiliation

  • 1 Department of Urology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China.
Abstract

Exosomal circular RNA was found to mediate Cancer chemoresistance. However, whether exosomal circRNA Scm-like with four malignant brain tumor domains 2 (circ-SFMBT2) was involved in the chemoresistance of prostate Cancer (PCa) remains unclear. The docetaxel (DTX) resistance of PCa cells was analyzed by Cell Counting Kit 8 assay. Quantitative Real-Time PCR was used to measure circSFMBT2, MicroRNA (miR)-136-5p and tribbles homolog 1 (TRIB1) expression. Cell proliferation, Apoptosis, migration and invasion were analyzed by 5-ethynyl-2'-deoxyuridine (EdU) assay, flow cytometry, wound-healing assay and transwell assay. RNA interaction was verified by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Protein expression was measured by western blot analysis. Exosomes-extracted from cells were identified by transmission electron microscope, nanoparticles tracking analysis and western blot. Xenograft mice models were constructed to analyze the effect of exosomal circSFMBT2 on the DTX sensitivity of PCa tumors in vivo. CircSFMBT2 was upregulated in DTX-resistant PCa cells, and its knockdown enhanced the DTX sensitivity of DTX-resistant PCa cells by suppressing cell proliferation, migration, invasion and enhancing Apoptosis. CircSFMBT2 severed as miR-136-5p Sponge to positively regulate TRIB1. The regulation of circSFMBT2 knockdown on the DTX sensitivity of DTX-resistant PCa cells could be reversed by miR-136-5p inhibitor or TRIB1 overexpression. Exosomal circSFMBT2 from DTX-resistant PCa could increase the DTX resistance of normal PCa cells. In addition, exosomal circSFMBT2 also enhanced the DTX resistance of PCa tumors in vivo, and it was highly expressed in the serum of DTX-resistance PCa patients. Exosomal circSFMBT2 enhanced the DTX resistance of PCa by miR-136-5p/TRIB1 axis, indicating that circSFMBT2 might be a potential target for the treatment of PCa chemoresistance.

Figures
Products