1. Natural Products
  2. Disease Research Fields Plants Phenylpropanoids Phenols
  3. Schisandraceae Cancer Lignans Monophenols
  4. Schisandra chinensis (Turcz.) Baill.
  5. Schisanhenol

Schisanhenol  (Synonyms: Schizanhenol; Gomisin-K3)

Cat. No.: HY-N0859 Purity: 99.98%
COA Handling Instructions

Schisanhenol is a natural compound solated from Schisandra rubriflora; UGT2B7 UDP-glucuronosyltransferases inhibitor.

For research use only. We do not sell to patients.

Schisanhenol Chemical Structure

Schisanhenol Chemical Structure

CAS No. : 69363-14-0

Size Price Stock Quantity
Solid + Solvent
10 mM * 1 mL in DMSO
ready for reconstitution
USD 150 In-stock
10 mM * 1 mL in DMSO USD 150 In-stock
5 mg USD 137 In-stock
10 mg USD 220 In-stock
25 mg USD 410 In-stock
50 mg USD 675 In-stock
100 mg USD 940 In-stock
200 mg   Get quote  
500 mg   Get quote  

* Please select Quantity before adding items.

This product is a controlled substance and not for sale in your territory.

Customer Review

Based on 1 publication(s) in Google Scholar

Top Publications Citing Use of Products
  • Biological Activity

  • Purity & Documentation

  • References

  • Customer Review


Schisanhenol is a natural compound solated from Schisandra rubriflora; UGT2B7 UDP-glucuronosyltransferases inhibitor. IC50 value: Target: in vitro: Schisanhenol exhibited strong inhibition toward UGT2B7, with the residual activity to be 7.9% of control activity [1]. The BAECs were cultured with ox-LDL (200 microg/ml) in the presence and absence of Sal (10 and 50 micromol L(- 1)) for 24 h. The cytotoxicity of ox-LDL was evaluated by LDH leakage, cell viability and morphological change. Cell apoptosis was estimated by DNA ladder, chromatin condensation, and flow cytometry assay. The intracellular ROS production was detected by using DCF, a ROS probe, with laser confocal microscopy and flow cytometry. Sal was shown to reduce LDH leakage and increase cell viability. Sal also attenuated ox-LDL-induced BAECs apoptosis as indicated in typical internucleosomal DNA degradation (DNA ladder), condensed chromatin, and the sub-G1 peak appearance in flow cytometry assay [2]. in vivo: Sal significantly impeded production of MDA and loss of ATPase activity induced by reoxygenation following anoxia. Oral administration of Sal induced increase of cytosol glutathione-peroxidase of brain in mice under the condition of reoxygenation following anoxia [4].

Molecular Weight








Structure Classification
Initial Source

Room temperature in continental US; may vary elsewhere.

Powder -20°C 3 years
4°C 2 years
In solvent -80°C 2 years
-20°C 1 year
Solvent & Solubility
In Vitro: 

DMSO : 250 mg/mL (621.15 mM; Need ultrasonic)

Stock Solutions
Concentration Solvent Mass 1 mg 5 mg 10 mg
1 mM 2.4846 mL 12.4230 mL 24.8460 mL
5 mM 0.4969 mL 2.4846 mL 4.9692 mL
10 mM 0.2485 mL 1.2423 mL 2.4846 mL
*Please refer to the solubility information to select the appropriate solvent.
In Vivo:
  • 1.

    Add each solvent one by one:  10% DMSO    40% PEG300    5% Tween-80    45% Saline

    Solubility: ≥ 6.25 mg/mL (15.53 mM); Clear solution

  • 2.

    Add each solvent one by one:  10% DMSO    90% Corn Oil

    Solubility: ≥ 6.25 mg/mL (15.53 mM); Clear solution

*All of the co-solvents are available by MedChemExpress (MCE).
Purity & Documentation
  • No file chosen (Maximum size is: 1024 Kb)
  • If you have published this work, please enter the PubMed ID.
  • Your name will appear on the site.
Help & FAQs
  • Do most proteins show cross-species activity?

    Species cross-reactivity must be investigated individually for each product. Many human cytokines will produce a nice response in mouse cell lines, and many mouse proteins will show activity on human cells. Other proteins may have a lower specific activity when used in the opposite species.

  • Molarity Calculator

  • Dilution Calculator

The molarity calculator equation

Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

Mass   Concentration   Volume   Molecular Weight *
= × ×

The dilution calculator equation

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)

This equation is commonly abbreviated as: C1V1 = C2V2

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)
× = ×
C1   V1   C2   V2

Your Recently Viewed Products:

Inquiry Online

Your information is safe with us. * Required Fields.

Product Name



Applicant Name *


Email Address *

Phone Number *


Organization Name *

Department *


Requested quantity *

Country or Region *



Bulk Inquiry

Inquiry Information

Product Name:
Cat. No.:
MCE Japan Authorized Agent: