1. Academic Validation
  2. Activity of tedizolid phosphate (TR-701) in murine models of infection with penicillin-resistant and penicillin-sensitive Streptococcus pneumoniae

Activity of tedizolid phosphate (TR-701) in murine models of infection with penicillin-resistant and penicillin-sensitive Streptococcus pneumoniae

  • Antimicrob Agents Chemother. 2012 Sep;56(9):4713-7. doi: 10.1128/AAC.00346-12.
Sunghak Choi 1 Weonbin Im Ken Bartizal
Affiliations

Affiliation

  • 1 Dong-A Pharmaceutical Co., Yongin-Si, South Korea.
Abstract

The in vitro activity of tedizolid (previously known as torezolid, TR-700) against penicillin-resistant Streptococcus pneumoniae (PRSP) clinical isolates and the in vivo efficacy of tedizolid phosphate (torezolid phosphate, TR-701) in murine models of PRSP systemic Infection and penicillin-susceptible S. pneumoniae (PSSP) pneumonia were examined using linezolid as a comparator. The MIC(90) against 28 PRSP isolates was 0.25 μg/ml for tedizolid, whereas it was 1 μg/ml for linezolid. In mice infected systemically with a lethal inoculum of PRSP 1 h prior to a single administration of either antimicrobial, oral tedizolid phosphate was equipotent to linezolid (1 isolate) to 2-fold more potent than linezolid (3 isolates) for survival at day 7, with tedizolid phosphate 50% effective dose (ED(50)) values ranging from 3.19 to 11.53 mg/kg of body weight/day. In the PSSP pneumonia model, the ED(50) for survival at day 15 was 2.80 mg/kg/day for oral tedizolid phosphate, whereas it was 8.09 mg/kg/day for oral linezolid following 48 h of treatment with either agent. At equivalent doses (10 mg/kg once daily tedizolid phosphate or 5 mg/kg twice daily linezolid), pneumococcal titers in the lungs at 52 h postinfection were approximately 3 orders of magnitude lower with tedizolid phosphate treatment than with linezolid treatment or no treatment. Lung histopathology showed less inflammatory cell invasion into alveolar spaces in mice treated with tedizolid phosphate than in untreated or linezolid-treated mice. These results demonstrate that tedizolid phosphate is effective in murine models of PRSP systemic Infection and PSSP pneumonia.

Figures
Products