1. Academic Validation
  2. The activation of Toll-like receptor 4 reverses tumor differentiation in human glioma U251 cells via Notch pathway

The activation of Toll-like receptor 4 reverses tumor differentiation in human glioma U251 cells via Notch pathway

  • Int Immunopharmacol. 2018 Nov;64:33-41. doi: 10.1016/j.intimp.2018.08.019.
Jinyue Hu 1 Bizhi Shi 2 Xueting Liu 3 Manli Jiang 3 Chuang Yuan 3 Binyuan Jiang 3 Yinghui Song 4 Yanhua Zeng 4 Guihua Wang 5
Affiliations

Affiliations

  • 1 Medical Research Center, Changsha Central Hospital, Changsha, Hunan 410004, China. Electronic address: [email protected].
  • 2 State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China.
  • 3 Medical Research Center, Changsha Central Hospital, Changsha, Hunan 410004, China.
  • 4 Department of Oncology, Changsha Central Hospital, Changsha, Hunan 410004, China; Changsha Cancer Institute, Changsha Central Hospital, Changsha, Hunan 410004, China.
  • 5 Department of Oncology, Changsha Central Hospital, Changsha, Hunan 410004, China; Changsha Cancer Institute, Changsha Central Hospital, Changsha, Hunan 410004, China. Electronic address: [email protected].
Abstract

Toll-like receptors (TLRs) are closely related to Cancer. However, the mechanism for TLR regulation of Cancer is not fully understood. Our previous studies demonstrated that Toll-like Receptor (TLR) 4 functions to maintain the un-differential stem cell phenotypes of human endothelial progenitor cells. In this study, we found that human glioma cells expressed several TLRs. The activation of TLR4 by LPS in glioma U251 cells induced the expression of cytokines, including IL-1β, IL-6, IL-8, and TNFα, suggesting the functional expression of TLR4. Nude mouse in vivo studies showed that LPS treatment promoted tumor growth, and decreased mouse survival. But LPS treatment did not promote tumor cell proliferation in vitro. Meanwhile, we found that LPS treatment down-regulated the expression of glial fibrillary acidic protein (GFAP), an important differentiation maker of glioma, at both mRNA and protein levels. TLR4 activation also down-regulated GFAP in glioma Hs683 cells. LPS did not induce the activation of MAPKs, but induced the activation of NF-κB. However, pharmacological inhibition of NF-κB signaling did not reverse the down-regulation of GFAP. Furthermore, we found that LPS induced the activation of Notch pathway, which was MyD88-dependent, and Notch inhibition reversed the down-regulation of GFAP. In addition, LPS treatment up-regulated stem cell makers, including CD34 and CD133. Taken together, these results suggested that in human glioma U251 cells, TLR4 functions to reverse tumor differentiation, and it may be a target for glioma prevention and therapy.

Keywords

Cancer stem cell; Differentiation; Glioma; Notch; Toll-like receptor 4.

Figures
Products