1. Academic Validation
  2. Highly Sensitive Chemiluminescent Immunoassay of Mycotoxins Using ZIF-8-Derived Yolk-Shell Co Single-Atom Site Catalysts as Superior Fenton-like Probes

Highly Sensitive Chemiluminescent Immunoassay of Mycotoxins Using ZIF-8-Derived Yolk-Shell Co Single-Atom Site Catalysts as Superior Fenton-like Probes

  • Anal Chem. 2022 Feb 22;94(7):3400-3407. doi: 10.1021/acs.analchem.1c05557.
Hui Ouyang 1 Jiaxin Xian 1 Jiaqi Gao 1 Lvxia Zhang 1 Wenwen Wang 1 Zhifeng Fu 1
Affiliations

Affiliation

  • 1 Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
Abstract

Superior to traditional nanoscale catalysts, single-atom site catalysts (SASCs) show such merits as maximal catalysis efficiency and outstanding catalytic activity for the construction of analytical methodological platforms. Hereby, an in situ etching strategy was designed to prepare yolk-shell Co SASCs derived from ZIF-8@SiO2 nanoparticles. On the basis of direct chemical interactions between precursors and supports, the Co element with isolated atomic dispersion was anchored on ZIF-8@SiO2 nanoparticles. The Co SASCs possess high Fenton-like activity and thus can catalyze the decomposition of H2O2 to produce massive superoxide radical anions instead of singlet oxygen and hydroxyl radicals. With the activity for producing superoxide radical anion, Co SASCs can greatly improve the chemiluminescent (CL) response of a luminol system by 3133.7 times. Furthermore, the SASCs with active sites of Co-O5 moieties were utilized as the CL probes for establishment of an immunoassay method for sensitive detection of mycotoxins by adopting aflatoxin B1 as a mode analyte. The quantitation range is 10-1000 pg/mL, and the limit of detection is 0.44 pg/mL (3σ) for aflatoxin B1. The proof-of-principle work elucidates the practicability of direct chemical interactions between precursors and supports for forming SASCs with ultrahigh CL response, which can be extended to the exploitation of more sorts of SASCs for tracing biological binding events.

Figures
Products