1. Academic Validation
  2. Verteporfin is a substrate-selective γ-secretase inhibitor that binds the amyloid precursor protein transmembrane domain

Verteporfin is a substrate-selective γ-secretase inhibitor that binds the amyloid precursor protein transmembrane domain

  • J Biol Chem. 2022 Apr;298(4):101792. doi: 10.1016/j.jbc.2022.101792.
Manuel A Castro 1 Kristine F Parson 2 Ilyas Beg 3 Mason C Wilkinson 4 Kamila Nurmakova 5 Iliana Levesque 2 Markus W Voehler 6 Michael S Wolfe 3 Brandon T Ruotolo 2 Charles R Sanders 7
Affiliations

Affiliations

  • 1 Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA.
  • 2 Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA.
  • 3 Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas, USA.
  • 4 Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA; Chemical and Physical Biology Program and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA.
  • 5 Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA.
  • 6 Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA.
  • 7 Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA. Electronic address: [email protected].
Abstract

This work reports substrate-selective inhibition of a protease with broad substrate specificity based on direct binding of a small-molecule inhibitor to the substrate. The target for these studies was γ-secretase protease, which cleaves dozens of different single-span membrane protein substrates, including both the C99 domain of the human amyloid precursor protein and the Notch receptor. Substrate-specific inhibition of C99 cleavage is desirable to reduce production of the Amyloid-β polypeptide without inhibiting Notch cleavage, a major source of toxicity associated with broad specificity γ-secretase inhibitors. In order to identify a C99-selective inhibitors of the human γ-secretase, we conducted an NMR-based screen of FDA-approved drugs against C99 in model membranes. From this screen, we identified the small-molecule verteporfin with these properties. We observed that verteporfin formed a direct 1:1 complex with C99, with a KD of 15-47 μM (depending on the membrane mimetic used), and that it did not bind the transmembrane domain of the Notch-1 receptor. Biochemical assays showed that direct binding of verteporfin to C99 inhibits γ-secretase cleavage of C99 with IC50 values in the range of 15-164 μM, while Notch-1 cleavage was inhibited only at higher concentrations, and likely via a mechanism that does not involve binding to Notch-1. This work documents a robust NMR-based approach to discovery of small-molecule binders to single-span membrane proteins and confirmed that it is possible to inhibit γ-secretase in a substrate-specific manner.

Keywords

amyloid precursor protein; inhibitor; membrane; screening; γ-secretase.

Figures
Products