1. GPCR/G Protein
  2. Protease-Activated Receptor (PAR)


Cat. No.: HY-P0226A Purity: 99.29%
Handling Instructions

TFLLR-NH2 (TFA) is a selective PAR1 agonist with an EC50 of 1.9 μM.

For research use only. We do not sell to patients.

Custom Peptide Synthesis

TFLLR-NH2(TFA) Chemical Structure

TFLLR-NH2(TFA) Chemical Structure

CAS No. : 1313730-19-6

Size Price Stock Quantity
1 mg USD 216 In-stock
Estimated Time of Arrival: December 31
5 mg USD 864 In-stock
Estimated Time of Arrival: December 31
10 mg   Get quote  
50 mg   Get quote  

* Please select Quantity before adding items.

Customer Review

Based on 1 publication(s) in Google Scholar

Other Forms of TFLLR-NH2(TFA):

Top Publications Citing Use of Products
  • Biological Activity

  • Protocol

  • Purity & Documentation

  • References

  • Customer Review


TFLLR-NH2 (TFA) is a selective PAR1 agonist with an EC50 of 1.9 μM.

IC50 & Target

EC50: 1.9 μM (PAR1)[1]

In Vitro

PAR1 agonists stimulate concentration-dependent increases in [Ca2+]i and in the proportions of neurones. The maximal increase in [Ca2+]i above basal is detected in response to 10 μm TF-NH2 (peak 196.5±20.4 nM, n=25) when 50–80% of identified neurones responded[1]. SW620 cells cultured in the supernatant of TFLLR-NH2-activated platelets upregulate E-cadherin expression and downregulate the vimentin expression. In the in vitro platelet culture system, a TFLLR-NH2 dose-dependent increase of secreted TGF-β1 is detected in the supernatant[2].

In Vivo

Injection of TF-NH2 into the rat paw stimulates a marked and sustained oedema. An NK1R antagonist and ablation of sensory nerves with capsaicin inhibit oedema by 44% at 1 h and completely by 5 h. In wild-type but not PAR1−/− mice, TF-NH2 stimulates Evans blue extravasation in the bladder, oesophagus, stomach, intestine and pancreas by 2–8 fold. Extravasation in the bladder, oesophagus and stomach is abolished by an NK1R antagonist[1]. TFp-NH2 produces notable contraction at 3-50 μM and relaxation at 0.3-50 μM, in the absence of apamin. The concentration-response curve for TFp-NH2-induced contraction is remarkably shifted left, when the TFp-NH2-induced relaxation is blocked by apamin at 0.1 μM[3].

Molecular Weight








Sequence Shortening



Room temperature in continental US; may vary elsewhere.

Powder -80°C 2 years
  -20°C 1 year
In solvent -80°C 6 months
  -20°C 1 month
Solvent & Solubility
In Vitro: 

DMSO : 100 mg/mL (131.26 mM; Need ultrasonic)

H2O : 100 mg/mL (131.26 mM; Need ultrasonic)

Stock Solutions
Concentration Solvent Mass 1 mg 5 mg 10 mg
1 mM 1.3126 mL 6.5631 mL 13.1263 mL
5 mM 0.2625 mL 1.3126 mL 2.6253 mL
10 mM 0.1313 mL 0.6563 mL 1.3126 mL
*Please refer to the solubility information to select the appropriate solvent.
In Vivo:
  • 1.

    Add each solvent one by one:  10% DMSO    40% PEG300    5% Tween-80    45% saline

    Solubility: ≥ 2.5 mg/mL (3.28 mM); Clear solution

  • 2.

    Add each solvent one by one:  10% DMSO    90% (20% SBE-β-CD in saline)

    Solubility: ≥ 2.5 mg/mL (3.28 mM); Clear solution

  • 3.

    Add each solvent one by one:  10% DMSO    90% corn oil

    Solubility: ≥ 2.5 mg/mL (3.28 mM); Clear solution

*All of the co-solvents are provided by MCE.
Animal Administration

Mice are anaesthetized with isofluorane, and saline or TF-NH2 (3 μmol/kg in 25 μL physiological saline) is injected into the lateral tail vein. Evans blue (33.3 mg/kg in 50 μL saline) is co-injected with the peptide. Mice are perfused transcardially at 10 min after administration of TF-NH2 with physiological saline containing 20 u/mL heparin at a pressure of 80-100 mmHg for 2-3 min. Excised tissues are incubated in 1 mL of formamide for 48 h, and Evans blue content is measured spectrophotometrically at 650 nm[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

  • No file chosen (Maximum size is: 1024 Kb)
  • If you have published this work, please enter the PubMed ID.
  • Your name will appear on the site.
  • Molarity Calculator

  • Dilution Calculator

The molarity calculator equation

Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

Mass   Concentration   Volume   Molecular Weight *
= × ×

The dilution calculator equation

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)

This equation is commonly abbreviated as: C1V1 = C2V2

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)
× = ×
C1   V1   C2   V2


TFLLR-NH2(TFA)Protease-Activated Receptor (PAR)Thrombin receptorsInhibitorinhibitorinhibit

Your Recently Viewed Products:

Inquiry Online

Your information is safe with us. * Required Fields.

Product name



Applicant name *


Email address *

Phone number *


Organization name *

Country or Region *


Requested quantity *


Bulk Inquiry

Inquiry Information

Product name:
Cat. No.:
MCE Japan Authorized Agent: