1. Academic Validation
  2. Impact of clozapine, N-desmethylclozapine and chlorpromazine on thromboxane production in vitro

Impact of clozapine, N-desmethylclozapine and chlorpromazine on thromboxane production in vitro

  • Med Chem. 2012 Nov;8(6):1032-8. doi: 10.2174/1573406411208061032.
Hubertus Himmerich 1 Luise Schmidt Susen Becker Linda Kortz Jeremias Schonherr Roland Mergl Katrin Bauer Ulrich Sack Abigail J Sheldrick Joachim Thiery Uta Ceglarek
Affiliations

Affiliation

Abstract

Thromboxane A2 (TxA2) and the activation of its receptor have been shown to modulate vasoconstriction and platelet aggregation as well as dopaminergic and serotonergic signalling. Dopaminergic and serotonergic systems play a crucial role in the pathophysiology of schizophrenia and these systems are the main targets of antipsychotics (APs). As the first antipsychotic (AP) chlorpromazine (CPZ) has already been shown to reduce TxA2, we hypothesized that the AP clozapine and its metabolite N-desmethylclozapine (NDMC) might also influence TxA2 production. We measured levels of thromboxane B2 (TxB2), the metabolite of the very unstable molecule TxA2, in unstimulated and stimulated blood samples of 10 healthy female subjects in a whole blood assay using toxic shock syndrome toxin-1 (TSST-1) and monoclonal antibody against surface antigen CD3 combined with protein CD40 (OKT3/CD40) as stimulants. Blood was supplemented with the APs CPZ, clozapine or NDMC in one of four different concentrations. Additionally, thromboxane levels were measured in blood without the addition of APs under different stimulation conditions. Under TSST-1 as well as OKT3/CD40 stimulation, mean TxB2 concentrations were significantly (p < 0.05) decreased by clozapine over all applied concentrations. NDMC led to a decrease in TxB2 levels under unstimulated conditions as well as under TSST-1 stimulation. CPZ reduced TxB2 production at low concentrations under unstimulated and TSST-1- stimulated conditions. Clozapine, NDMC and CPZ possibly act on neurotransmitter systems via modulation of TxA2 or TxB2 production. Additionally, known side effects of APs such as orthostatic hypotension may be a result of changes in the concentrations of TxA2 or TxB2.

Figures
Products