1. Academic Validation
  2. The FDA-approved anti-cancer drugs, streptozotocin and floxuridine, reduce the virulence of Staphylococcus aureus

The FDA-approved anti-cancer drugs, streptozotocin and floxuridine, reduce the virulence of Staphylococcus aureus

  • Sci Rep. 2018 Feb 6;8(1):2521. doi: 10.1038/s41598-018-20617-5.
Won-Sik Yeo 1 Rekha Arya 2 Kyeong Kyu Kim 2 Hyunyoung Jeong 3 Kyu Hong Cho 4 Taeok Bae 5
Affiliations

Affiliations

  • 1 Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary, Indiana, 46408, USA.
  • 2 Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Suwon, 16419, Korea.
  • 3 Departments of Pharmacy Practice and Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, 60607, USA.
  • 4 Department of Biology, Indiana State University, Terre Haute, IN, 47809, USA.
  • 5 Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary, Indiana, 46408, USA. [email protected].
Abstract

In Staphylococcus aureus, an important Gram-positive human pathogen, the SaeRS two-component system is essential for the virulence and a good target for the development of anti-virulence drugs. In this study, we screened 12,200 small molecules for Sae inhibitors and identified two anti-cancer drugs, streptozotocin (STZ) and floxuridine (FU), as lead candidates for anti-virulence drug development against staphylococcal infections. As compared with STZ, FU was more efficient in repressing Sae-regulated promoters and protecting human neutrophils from S. aureus-mediated killing. FU inhibited S. aureus growth effectively whereas STZ did not. Intriguingly, RNA-seq analysis suggests that both compounds inhibit other virulence-regulatory systems such as Agr, ArlRS, and SarA more efficiently than they inhibit the Sae system. Both compounds induced prophages from S. aureus, indicating that they cause DNA damages. Surprisingly, a single administration of the drugs was sufficient to protect mice from staphylococcal intraperitoneal Infection. Both compounds showed in vivo efficacy in a murine model of blood Infection too. Finally, at the experimental dosage, neither compound showed any noticeable side effects on blood glucose level or blood cell counts. Based on these results, we concluded that STZ and FU are promising candidates for anti-virulence drug development against S. aureus Infection.

Figures
Products