1. Academic Validation
  2. Acute Diallyl Disulfide Administration Prevents and Reveres Lipopolysaccharide-Induced Depression-Like Behaviors in Mice via Regulating Neuroinflammation and Oxido-Nitrosative Stress

Acute Diallyl Disulfide Administration Prevents and Reveres Lipopolysaccharide-Induced Depression-Like Behaviors in Mice via Regulating Neuroinflammation and Oxido-Nitrosative Stress

  • Inflammation. 2021 Aug;44(4):1381-1395. doi: 10.1007/s10753-021-01423-0.
Xiaoyou Wei  # 1 Yaoying Ma  # 2 Fu Li  # 1 Haiyan He  # 3 Huaxing Huang 4 Chao Huang 2 Zhuo Chen 5 Dongjian Chen 5 Jinliang Chen 6 Xiaomei Yuan 7
Affiliations

Affiliations

  • 1 Changzhou Geriatric Hospital Affiliated to Soochow University, Changzhou No.7 People's Hospital, 288# Yanling East Road, Changzhou, 213000, Jiangsu, China.
  • 2 Department of Pharmacology, School of Pharmacy, Nantong University, 19# Qixiu Road, Nantong, 226001, Jiangsu, China.
  • 3 Department of Respiratory Medicine, the Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, #6 North Road Hai'er Xiang, Nantong, 226001, Jiangsu, China.
  • 4 Department of Nephrology, the Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, #6 North Road Hai'er Xiang, Nantong, 226001, Jiangsu, China.
  • 5 Invasive Technology Department, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong, 226001, Jiangsu, China.
  • 6 Department of Respiratory Medicine, the Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, #6 North Road Hai'er Xiang, Nantong, 226001, Jiangsu, China. [email protected].
  • 7 Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, #32 Xi'er Duan, 1ST Ring Road, Chengdu, 610072, Sichuan, China. [email protected].
  • # Contributed equally.
Abstract

Neuroinflammation and oxidative stress play critical roles in pathogenesis of depression. Diallyl disulfide (DADS), an active compound in garlic oil, has been shown to exhibit obvious anti-inflammatory and anti-oxidative activities. Preliminary evidence indicates that depression is associated with high levels of pro-inflammatory cytokines and oxidative markers, suggesting that inhibition of neuroinflammatory response and oxidative stress may be beneficial for depression interruption. Here, we investigated the antidepressant effect of DADS as well as it mechanisms in a depression-like model induced by lipopolysaccharide (LPS). Similarly to imipramine (10 mg/kg), a clinical antidepressant, DADS (40 or 80 mg/kg), which was administered 1 h before LPS treatment (pre-LPS) or 1.5 h and 23.5 h after LPS treatment (post-LPS), prevented and reversed LPS (100 μg/kg)-induced increase in immobility time in the tail suspension test (TST) and forced swim test (FST) in mice. Mechanistic studies revealed that DADS pre-treatment or post-treatment at the dose of 40 and 80 mg/kg prevented and reversed (i) LPS-induced increases in interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and nitric oxide (NO) levels in the hippocampus and prefrontal cortex, (ii) LPS-induced increases in contents of malondialdehyde (MDA), a parameter reflecting high levels of oxidative stress, and (iii) LPS-induced decreases in contents of GSH, a marker reflecting weakened anti-oxidative ability, in the hippocampus and prefrontal cortex in mice. These results indicate that DADS is comparable to imipramine in effectively ameliorating LPS-induced depression-like behaviors in mice, providing a potential value for DADS in prevention and/or therapy of depression.

Keywords

depression; diallyl disulfide; lipopolysaccharide; neuroinflammation; oxidative stress.

Figures
Products