1. Academic Validation
  2. Involvement of p38 and p42/44 MAP kinases and protein kinase C in the interferon-gamma and interleukin-1alpha-induced phosphorylation of 85-kDa cytosolic phospholipase A(2) in primary human bronchial epithelial cells

Involvement of p38 and p42/44 MAP kinases and protein kinase C in the interferon-gamma and interleukin-1alpha-induced phosphorylation of 85-kDa cytosolic phospholipase A(2) in primary human bronchial epithelial cells

  • Cytokine. 2004 Jan 7;25(1):11-20. doi: 10.1016/j.cyto.2003.08.013.
Tong Wu 1 Chang Han James H Shelhamer
Affiliations

Affiliation

  • 1 Department of Pathology, University of Pittsburgh School of Medicine, Presbyterian University Hospital C902, 200 Lothrop Street, Pittsburgh, PA 15213, USA. [email protected]
Abstract

Interferon-gamma (IFN-gamma) and interleukin-1 (IL-1) play an important role in the modulation of acute and chronic airway inflammation. Both IFN-gamma and IL-1 are known to increase the release of arachidonic acid (AA) from airway epithelial cells, suggesting that AA metabolites may mediate the cytokine-induced inflammation. This study was designed to examine the direct effect of IFN-gamma and IL-alpha on the phosphorylation of 85-kDa cytosolic Phospholipase A(2) (cPLA(2)) and AA release in primary normal human bronchial epithelial (NHBE) cells. Treatment with IFN-gamma and IL-1alpha for 15 min induced a rapid increase of AA release from NHBE cells, which was blocked by the cPLA(2) inhibitor MAFP (p<0.05) but not by the sPLA(2) inhibitor LY311727 or iPLA(2) inhibitor HELSS. Immunoprecipitation and Western blot analysis showed that both IFN-gamma and IL-1alpha induced a rapid phosphorylation of cPLA(2). The IFN-gamma and IL-1alpha-induced cPLA(2) phosphorylation and AA release in the NHBE cells were inhibited by the p38 MAP kinase (MAPK) inhibitor SB203580, p42/44 MAPK inhibitor PD98059 and protein kinase C (PKC) inhibitor bisindolylmaleimide I. These results demonstrate the involvement of p38 and p42/44 MAPKs as well as PKC in the IFN-gamma and IL-1alpha-induced cPLA(2) phosphorylation and AA release in human airway epithelial cells.

Figures