1. Academic Validation
  2. 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside inhibits proinflammatory response in glial cells: a possible role of AMP-activated protein kinase

5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside inhibits proinflammatory response in glial cells: a possible role of AMP-activated protein kinase

  • J Neurosci. 2004 Jan 14;24(2):479-87. doi: 10.1523/JNEUROSCI.4288-03.2004.
Shailendra Giri 1 Narendra Nath Brian Smith Benoit Viollet Avtar K Singh Inderjit Singh
Affiliations

Affiliation

  • 1 Department of Pediatrics and Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
Abstract

AMP-activated protein kinase (AMPK) is tightly regulated by the cellular AMP:ATP ratio and plays a central role in the regulation of energy homeostasis and metabolic stress. A pharmacological activator of AMPK, 5-amino-4-imidazole carboxamide riboside (AICAR) inhibited lipopolysaccharide (LPS)-induced expression of proinflammatory cytokines (tumor necrosis factor alpha, interleukin-1beta, and interleukin-6) and inducible nitric oxide synthase in primary rat astrocytes, microglia, and peritoneal macrophages. AICAR attenuates the LPS-induced activation of nuclear factor kappaB via downregulation of IkappaB kinase alpha/beta activity. It also inhibits nuclear translocation of CCAAT/enhancer-binding protein (C/EBP) transcription factor by inhibiting the expression of C/EBP-delta in brain glial cells. The dominant negative form of AMPKalpha2 (D157A) and its antisense documents a possible role of AMPK in the regulation of the cellular proinflammatory process. AICAR also inhibited the production of inflammatory mediators in serum and their expression in CNS of rats injected with a sublethal dose of LPS by intraperitoneal injection. These observations in cultured cells as well as in the animal model suggest that AICAR may be of therapeutic value in treating inflammatory diseases.

Figures
Products